
www.manaraa.com

ANALYSIS OF CALCIUM AND HYDROGEN PEROXIDE 

FREQUENCY RESPONSES IN T CELLS AT SINGLE-CELL 

RESOLUTION VIA MICROFLUIDIC TRAPS 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

by 

 

 

Ariel Seitz Kniss-James 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in Biomedical Engineering in the 

Wallace H. Coulter Department of Biomedical Engineering 

 

 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2016 

 

 

COPYRIGHT © 2016 BY ARIEL S. KNISS-JAMES  



www.manaraa.com

ANALYSIS OF CALCIUM AND HYDROGEN PEROXIDE 

FREQUENCY RESPONSES IN T CELLS AT SINGLE-CELL 

RESOLUTION VIA MICROFLUIDIC TRAPS 

 

 

 

 

Approved by:   

   

Dr. Melissa L. Kemp, Advisor 

Department of Biomedical Engineering 

Georgia Institute of Technology  

and Emory University 

 Dr. Hang Lu, Advisor 

School of Chemical and Biomolecular 

Engineering 

Georgia Institute of Technology 

   

Dr. Eberhard O. Voit  

Department of Biomedical Engineering 

Georgia Institute of Technology  

and Emory University 

 Dr. Cheng Zhu  

Department of Biomedical Engineering 

Georgia Institute of Technology  

and Emory University 

   

Dr. Magnus Egerstedt 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 Dr. Dean P. Jones 

Department of Medicine 

Emory University 

   

  Date Approved: April 18, 2016 

  



www.manaraa.com

 

 

 

 

 

 

 

 

 

To my family 

  

 

 

 

 

 



www.manaraa.com

 

iv 

ACKNOWLEDGEMENTS 

 For their invaluable support and guidance over the past five years, I wish to thank 

my advisors, Dr. Melissa Kemp and Dr. Hang Lu. I am forever grateful for their 

investment of time and energy into my development as a scientific researcher and young 

professional. I would also like to thank my committee members for all of their input and 

suggestions throughout this process: Dr. Eberhard Voit, Dr. Cheng Zhu, Dr. Magnus 

Egerstedt, and Dr. Dean Jones. I would also like to thank my financial support through 

NSF Graduate Research Fellowship Grant DGE-1148903, P.E.O. Scholar Award, NIH 

Training Grant 32GM105490, NIH R01AI088023, and EBICS. 

 Finally, it is with my sincerest gratitude that I wish to thank my family and friends 

for their unwavering support and enthusiasm for all of my endeavors through life. I am 

fortunate to have such an amazing group of people setting an example of kindness, 

compassion, and dedication. I hope to exemplify these qualities while never losing sight 

of all the opportunities I have been given to reach this point in my career. 

 

  

 



www.manaraa.com

 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .............................................................................................. IV 

LIST OF TABLES ............................................................................................................ IX 

LIST OF FIGURES ........................................................................................................... X 

LIST OF SYMBOLS AND ABBREVIATIONS .......................................................... XIV 

SUMMARY ..................................................................................................................... XV 

CHAPTER 1 INTRODUCTION .................................................................................. 1 

1.1 Research Objectives and Specific Aims ................................................................ 2 

1.2 Significance of Results .......................................................................................... 5 

CHAPTER 2 BACKGROUND .................................................................................... 7 

2.1 Immune Cells and Diseases ................................................................................... 7 

2.2 ROS and Calcium as Secondary Messengers ........................................................ 8 

2.2.1 Mitochondria as a Source of ROS................................................................... 8 

2.2.2 Calcium as a Secondary Messenger .............................................................. 10 

2.2.3 Cross-talk Between Calcium and ROS ......................................................... 12 

2.3 Technology for Analyzing T Cell Signaling ........................................................ 14 

2.3.1 Microfluidic Techniques ............................................................................... 15 

2.3.2 Computational Modeling Techniques ........................................................... 16 

2.4 Motivations for Research ..................................................................................... 17 

CHAPTER 3 SINGLE-CELL ANALYSES AND OBSERVED HETEROGENEITY 

OF REDOX SIGNALING IN RESPONSE TO ANTIMYCIN A.................................... 20 

3.1 Introduction .......................................................................................................... 20 

3.2 Materials and Methods ......................................................................................... 23 

3.2.1 Microfluidic Platform ................................................................................... 23 

3.2.2 Microscope System and Image Analysis ...................................................... 25 

3.2.3 Cellular Conditions ....................................................................................... 27 

3.3 Results .................................................................................................................. 29 

3.3.1 Imaging Mitochondrial Superoxide Production ............................................ 29 

3.3.2 Imaging Mitochondrial Hydrogen Peroxide Production ............................... 30 

3.4 Discussion ............................................................................................................ 31 



www.manaraa.com

 vi 

CHAPTER 4 COMPUTATIONAL MODELING OF AGE DEPENDENT 

DIFFERENTIAL INTRACELLULAR CALCIUM SIGNALING DURING T CELL 

ACTIVATION ............................................................................................................... 33 

4.1 Introduction .......................................................................................................... 33 

4.1.1 T Cell Activation and Immunosenescence.................................................... 33 

4.1.2 ODE Mechanistic Models of T Cell Activation............................................ 35 

4.2 Materials and Methods ......................................................................................... 36 

4.2.1 Model Description ........................................................................................ 36 

4.2.2 Parameter Optimization ................................................................................ 43 

4.2.3 Sensitivity Analysis ...................................................................................... 47 

4.3 Results .................................................................................................................. 48 

4.3.1 Jurkat Model Shows Adequate Fit ................................................................ 48 

4.3.2 Young Model Recreates Experimental Data ................................................. 50 

4.3.3 Sensitivity Analysis of Young Model ........................................................... 55 

4.3.4 Old Model Recreates Experimental Data...................................................... 57 

4.3.5 Models Capture Dynamic Response of Senescing T Cells ........................... 60 

4.4 Discussion ............................................................................................................ 61 

CHAPTER 5 MICROFLUIDIC TECHNIQUES FOR OSCILLATORY 

STIMULATION AND SINGLE-CELL FREQUENCY RESPONSE ANALYSIS ........ 65 

5.1 Introduction .......................................................................................................... 65 

5.1.1 Frequency Based Stimulation ....................................................................... 65 

5.1.2 Experimental Techniques For Oscillatory Manipulation .............................. 66 

5.2 Materials and Methods ......................................................................................... 67 

5.2.1 Device Design: Device for Multiplex Cell Stimulation ................................ 67 

5.2.2 Methods: Device for Multiplex Cell Stimulation ......................................... 68 

5.2.3 Device Design: Modularized Device for Uniform Cell Stimulation ............ 71 

5.2.4 Methods: Modularized Device for Uniform Cell Stimulation ...................... 72 

5.3 Results .................................................................................................................. 75 

5.3.1 Device for Multiplex Cell Stimulation ......................................................... 75 

5.3.2 Modularized Device for Uniform Cell Stimulation ...................................... 79 

5.4 Discussion ............................................................................................................ 83 

CHAPTER 6 T CELL RESPONSE TO OSCILLATORY STIMULATION ............. 86 



www.manaraa.com

 vii 

6.1 Introduction .......................................................................................................... 86 

6.2 Materials and Methods ......................................................................................... 89 

6.2.1 Cell Culture and Treatments ......................................................................... 89 

6.2.2 Device Operation .......................................................................................... 89 

6.2.3 ROS and Calcium Model: System of Differential Equations ....................... 90 

6.2.4 Model Equations: ROS Module .................................................................... 91 

6.2.5 ROS and Calcium Model: Parameter Optimization .................................... 102 

6.2.6 Fitting Transfer Function Model ................................................................. 104 

6.2.7 Frequency Response Analysis .................................................................... 105 

6.3 Results ................................................................................................................ 107 

6.3.1 Single-cell Analysis Reveals Response to Oscillatory Stimulation ............ 107 

6.3.2 Input Amplitude Alters Cellular Entrainment for a Given Frequency........ 109 

6.3.3 Cellular Entrainment is Dependent on Input Frequency ............................. 111 

6.3.4 Second Order System Model Describes the Behavior of T Cells in Response 

to Varying Stimulation ............................................................................................ 112 

6.3.5 ROS and Calcium Model: Fit and Frequency Response Analysis.............. 115 

6.4 Discussion .......................................................................................................... 119 

CHAPTER 7 HYDROGEN PEROXIDE SIGNALING AND SUBSEQUENT 

TRANSCRIPTIONAL RESPONSE TO ROBUST CALCIUM OSCILLATIONS ...... 125 

7.1 Introduction ........................................................................................................ 125 

7.1.1 ROS Production During T Cell Activation ................................................. 126 

7.1.2 Ca2+ Frequencies and Transcriptional Changes .......................................... 129 

7.1.3 Single Molecule Fluorescent In Situ Hybridization .................................... 130 

7.2 Materials and Methods ....................................................................................... 133 

7.2.1 Cell Culture ................................................................................................. 133 

7.2.2 HyPer Transfection and Stable Line Creation ............................................ 133 

7.2.3 Ca2+ Clamping with Thapsigargin .............................................................. 134 

7.2.4 smFISH ....................................................................................................... 135 

7.2.5 smFISH Image Analysis ............................................................................. 136 

7.2.6 Clustering .................................................................................................... 137 

7.3 Results ................................................................................................................ 138 

7.3.1 Cells are Chemically Clamped with Thapsigargin ..................................... 138 



www.manaraa.com

 viii 

7.3.2 Response of Cytoplasmic H2O2 to Ca2+ Oscillations .................................. 139 

7.3.3 Response of Mitochondrial H2O2 to Ca2+ Oscillations ............................... 141 

7.3.4 smFISH Response to Oscillatory Stimulation ............................................ 143 

7.3.5 Clustering Time Course Data ...................................................................... 146 

7.3.6 Correlation of Signaling with Transcriptional Response ............................ 152 

7.4 Discussion .......................................................................................................... 156 

CHAPTER 8 CONCLUSIONS AND FUTURE DIRECTIONS.............................. 162 

8.1 Conclusions ........................................................................................................ 162 

8.2 Future Research Directions ................................................................................ 169 

8.2.1 Development of Computational Tools for Analyzing Single-Cells ............ 169 

8.2.2 Frequency Response Analysis of ROS/Ca2+ Signaling............................... 170 

8.2.3 Characterizing H2O2 Response to Ca2+ ....................................................... 171 

8.2.4 Transcriptional Response to Oscillatory Stimulation ................................. 172 

APPENDIX A: DOCUMENTED CODE ....................................................................... 174 

A.1. Device Characterization and Single-cell Identification ................................... 174 

A.1.1. Manual Identification .................................................................................... 174 

A.2. Frequency Response Analysis Pipeline ........................................................... 176 

A.2.1. Step 1: Single-cell Identification .................................................................. 176 

A.2.2. Step 2: Collect Time Lapse Data .................................................................. 176 

A.2.3. Step 3: Normalize Traces .............................................................................. 179 

A.2.4. Step 4: Spectral Analysis Using Modified GUI ............................................ 180 

A.2.5. Step 5: Combine Gain and Phase Calculations ............................................. 181 

A.3. HyPer Signaling Analysis Pipeline .................................................................. 182 

A.3.1. Step 1: Determine Number of Cells .............................................................. 182 

A.3.2. Step 2: Analyze Cell Traces .......................................................................... 184 

REFERENCES ............................................................................................................... 190 

 

  



www.manaraa.com

 ix 

LIST OF TABLES 

Table 4-1: Initial conditions for all Jurkat model runs. .................................................... 45 

Table 4-2: Original bounds set on parameter values for parameter estimation. ............... 46 

Table 4-3: 95% confidence interval for parameter values in Jurkat T cells. .................... 49 

Table 4-4: Parameters chosen for plotting and subsequent model fitting or sensitivity 

analysis ...................................................................................................................... 51 

Table 4-5: 95% confidence interval for parameter values in primary young CD8+ T cells.

................................................................................................................................... 54 

Table 6-1: Optimized Initial Conditions for ROS/Ca2+ Model. ...................................... 103 

Table 6-2: Optimized Parameter Values for ROS/Ca2+ Model. ..................................... 103 

Table 6-3: Optimized Parameter Values for Transfer Function Fit. ............................... 105 

 

 

 



www.manaraa.com

 x 

LIST OF FIGURES 

Figure 1-1. Overview of dissertation. ................................................................................. 6 

Figure 3-1: Schematic of mitochondrial ROS production. ............................................... 21 

Figure 3-2: Device loaded with cells. ............................................................................... 24 

Figure 3-3: Device position with respect to microscope. ................................................. 26 

Figure 3-4: Mitochondrial superoxide production with antimycin A stimulation. ........... 30 

Figure 3-5: Mitochondrial hydrogen peroxide production with antimycin A stimulation.

................................................................................................................................... 31 

Figure 4-1: Model schematic showing included species and interactions involved with T 

cell activation. ........................................................................................................... 38 

Figure 4-2: Optimization of Jurkat Model Fit................................................................... 48 

Figure 4-3: Multiple iterations of Jurkat model optimization shows tight Ca2+ dynamics.

................................................................................................................................... 49 

Figure 4-4: Model results for young primary CD8+ T cell model compared to 

experimental data. ..................................................................................................... 53 

Figure 4-5: Primary young CD8+ T cell model results from 15 iterations of optimization.

................................................................................................................................... 54 

Figure 4-6: Best fit of Old CD8+ T cell model varying only two parameter, Vcrac and 

Vpmca. ......................................................................................................................... 55 

Figure 4-7. Model sensitivity analysis of Ca2+ trace features implicated in 

immunosenescence. .................................................................................................. 56 

Figure 4-8: Best fit of old CD8+ T cell model with allowing seven parameters to vary 

from the young CD8+ T cell model, as identified through sensitivity analysis. ....... 58 



www.manaraa.com

 xi 

Figure 4-9: Varying Kstim from the “young T cell” model fit to investigate the effects on 

calcium traces............................................................................................................ 59 

Figure 4-10: Varying Vcrac from the young CD8+ T cell model fit to investigate the effects 

on calcium traces....................................................................................................... 59 

Figure 4-11: Model predictions compared to experimental data of Ca2+ dynamics between 

young and old CD8+ T cells. ..................................................................................... 61 

Figure 5-1: One layer device overview. ............................................................................ 68 

Figure 5-2: Microfluidic device description and experimental setup. .............................. 72 

Figure 5-3: Varying frequencies in one layer device. ....................................................... 76 

Figure 5-4: Cytoplasmic calcium signalling synchronizes with low frequency oscillating 

stimulus. .................................................................................................................... 78 

Figure 5-5: Characterization of different frequencies in two layer device. ...................... 80 

Figure 5-6: Example analyzed frame for identifying single T cells in two-layer device. 81 

Figure 5-7: Data analysis pipeline of example 2.78 mHz experiment. ............................. 82 

Figure 6-1: Schematic of Species and Connections Within the ROS/Ca2+ Model. .......... 91 

Figure 6-2: Single-cell analysis reveals observable entrainment to oscillatory H2O2 

treatment when compared to controls. .................................................................... 108 

Figure 6-3: The amplitude of oscillatory stimulation differentially regulates the output 

signal with maximal entrainment at 25 µM. ........................................................... 110 

Figure 6-4: Differences can be seen in output signal with different input frequencies of 

H2O2. ....................................................................................................................... 111 



www.manaraa.com

 xii 

Figure 6-5: The Bode plot representation of the data is well approximated with second 

order behavior with a resonant frequency at approximately 6 minute oscillations 

(2.78 mHz). ............................................................................................................. 113 

Figure 6-6: Bode Plot Fits for Different Portions of the Population............................... 115 

Figure 6-7: ROS Ca2+ Model Optimized Parameter Fit. ................................................. 116 

Figure 6-8: Optimized Model Perturbation with Bolus H2O2 Addition. ........................ 117 

Figure 6-9: Frequency Response Analysis of the Optimized ROS Ca2+ Model. ............ 118 

Figure 6-10: Bode Plot of the Optimized ROS Ca2+ Model. .......................................... 119 

Figure 7-1: Characterization of Ca2+ Signaling with Thapsigargin Treatment. .............. 139 

Figure 7-2: Cytoplasmic H2O2 Concentration in Response to Oscillatory Ca2+ Signals of 

Different Frequencies.............................................................................................. 141 

Figure 7-3: Mitochondrial H2O2 Concentration in Response to Oscillatory Ca2+ Signals of 

Different Frequencies.............................................................................................. 143 

Figure 7-4: smFISH Images Collected Post Stimulation with Different Oscillatory Ca2+ 

Stimulation. ............................................................................................................. 144 

Figure 7-5: Results of smFISH Analysis Following Oscillatory Treatment with Ca2+ at 

Various Frequencies................................................................................................ 145 

Figure 7-6: Clustered EGTA/Ca2+ Treatment Conditions of HyPer-Cyto Response. .... 146 

Figure 7-7: Clustered EGTA/Ca2+ Treatment Conditions of HyPer-Mito Response. .... 148 

Figure 7-8: 10 s Post Stimulation Response vs. Identified Cluster of Single-cells. ....... 149 

Figure 7-9: Compiled Results for HyPer-Cyto and HyPer-Mito Response to Ca2+ 

Stimulation. ............................................................................................................. 151 



www.manaraa.com

 xiii 

Figure 7-10: Analysis of FOS mRNA Transcript Number Compared to Cluster Number.

................................................................................................................................. 153 

Figure 7-11: Analysis of HIF1α mRNA Transcript Number Compared to Cluster 

Number. .................................................................................................................. 154 

Figure 7-12: Linear Correlation Between mRNA Probes in HyPer-Cyto Transfected 

Cells. ....................................................................................................................... 155 

Figure 7-13: Linear Correlation Between mRNA Probes in HyPer-Mito Transfected 

Cells. ....................................................................................................................... 156 

 

 



www.manaraa.com

 xiv 

LIST OF SYMBOLS AND ABBREVIATIONS 

APC Antigen Presenting Cell 

Ca2+ Calcium 

CaMKII Ca2+/Calmodulin-Dependent Protein Kinase II 

CD3 mAB CD3 Monoclonal Antibody 

CRAC Calcium Release-Activated Channels 

DAG Diacylglycerol 

ER Endoplasmic Reticulum 

GPx Glutathione Peroxidase 

GSSG Glutathione Disulfide 

GSH Glutathione 

H2O2 Hydrogen Peroxide 

HIF1 Hypoxia Inducible Factor 1  

IP3 Inositol Triphosphate 

IP3R IP3 Receptor 

LAT Linker of Activated T cells 

LCK Lymphocyte-specific Protein Tyrosine Kinase 

NFAT Nuclear Factor of Activated T cells 

NF-B Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells 

ODE Ordinary Differential Equations 

PIP2 Phosphatidylinositol Biphosphate 

PM Plasma Membrane 

ROS Reactive Oxygen Species 

RyR Ryanodine Receptor 

SERCA Sarco/Endoplasmic Reticulum Ca2+ ATPase 

smFISH Small Molecule Fluorescent In Situ Hybridization 

SOCE Store Operated Ca2+ Entry 

STIM1 Stromal Interaction Molecule 1 

TCR T Cell Receptor 

ZAP70 Zeta-chain Associated Protein Kinase 70kDa  

ΔΨm Mitochondrial Membrane Potential 

 



www.manaraa.com

 xv 

SUMMARY 

 As a key component of the adaptive immune response, T cell lymphocytes are 

widely studied but often difficult to isolate and visualize for experimentation with single-

cell resolution. Intracellular signaling upon activation of the T cell receptor by antigen 

presenting cells is necessary for proper immune function. The resulting cytosolic calcium 

(Ca2+) concentration has been shown to oscillate, differentially encoding downstream 

transcription factors. Activation also requires the concurrent signaling of hydrogen 

peroxide (H2O2) and Ca2+, with implications on protein and channel functions between 

these networks. Frequency response analysis, originally developed in control engineering, 

has been shown to be useful for analyzing biological systems and allows us to probe 

intracellular Ca2+ dynamics in the frequency domain to better investigate the relationship 

between H2O2 and Ca2+. To enable single-cell studies of intracellular T cell signaling 

dynamics, we first developed computational and microfluidic tools necessary for single-

cell trapping, imaging, and analysis. This novel platform provides a systematic approach 

for analyzing T cell signaling in the frequency domain and is applicable for assessing 

many biological questions.   

 Stimulation with oscillatory H2O2 solutions identified specific input frequencies 

that facilitate entrainment of Ca2+ signaling. We observed heterogeneous responses of 

cells upon stimulation with dynamic H2O2, illustrating the necessity of single-cell 

analysis to understand the realm of potential responses and ultimately better identification 

of diseased states. Jurkat T cells were found to respond robustly to input oscillations of 

2.78 mHz frequency, corresponding to a period of 6 minutes. The resulting transfer 

functions for subpopulations had different characteristics, mainly in the damping 
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coefficient. This illustrates the potential for high and low responding cells to display 

different filtering characteristics to H2O2 signaling upon T cell activation.  

 We extended this analysis and switched the input and output signals such that 

cells were exposed to oscillatory Ca2+ solutions and localized intracellular H2O2 was 

measured using two variants of the reporter protein, HyPer. Post-stimulation, cells were 

fixed and hybridized on-chip with smFISH probes, enabling us to track single-cells from 

signaling events to the downstream transcriptional response. Differences arise in Ca2+ 

stimulated H2O2 dynamics depending on location of the reporter within the cell; we 

observed a clear reduction in cytoplasmic H2O2 levels while mitochondrial H2O2 was 

shown to initially increase. This difference in signaling dynamics suggests different 

regulatory mechanisms for Ca2+-H2O2 crosstalk dependent on subcellular localization. 

We report the first investigation of the downstream transcriptional response using 

smFISH analysis following oscillatory stimulation with cytoplasmic Ca2+ signaling. 

These findings uphold our previous results with a natural frequency identified to be 

approximately 2.78 mHz as our smFISH response was maximal at this frequency, 

connecting the functional consequence with upstream frequency-based signaling.  

 In summary, we developed experimental and computational techniques to 

robustly deliver oscillatory stimulation to cells, monitor the response of various reporters, 

and automatically analyze these single-cell traces through time, highlighting a previously 

unexplored domain of Ca2+ signaling in T cell lymphocytes. We found a natural 

frequency of the system in response to H2O2 and validated that this dominant frequency 

encodes the maximal transcriptional response, indicating a functional change for 

activated T cells. By visualizing the previously uncharacterized H2O2 response to Ca2+ 
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stimulation, we found differences in redox environments between the cytoplasm and 

mitochondria. Overall, through the use of innovative microfluidic platforms, localized 

reporter proteins, computational models, and frequency response analysis techniques, we 

were able to perturb Jurkat T cells in an unprecedented fashion, uncovering new insight 

into the dynamic signaling of Ca2+ and H2O2. 
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1 

CHAPTER 1  INTRODUCTION  

 Immune response to specific pathogens includes the activation of T cell 

lymphocytes, which will subsequently differentiate into effector cells and secrete specific 

cytokine panels to help eliminate the identified threat [1]. Ca2+ has been shown to 

increase upon stimulation, with heterogeneous, dynamic, and spatially localized 

responses seen across a population of cells [2]. With such complex signals, it is difficult 

to (1) understand the possible responses, and (2) correlate these with downstream 

effectiveness. Successful T cell activation includes the concurrent signaling of multiple, 

interconnected molecules such as Ca2+ and reactive oxygen species (ROS), yet the 

spatiotemporal resolution of this signaling has not been fully characterized [3].  

  ROS such as H2O2 and superoxide act as secondary messengers within the cell 

and are involved in numerous cellular processes such as signal transduction, protein 

expression, and gene expression [4, 5]. Modification of ROS production and regulation 

within the cell has been implicated in many diseases such as cancer and autoimmune 

disorders and thus poses a relevant target to study [6-13]. ROS can be produced in 

distinct locations within the cell and act locally; yet most studies of ROS production 

currently consider global averages within the cell. Furthermore, these values are often 

obtained with techniques that only allow for population averages through time. It has 

been shown that ROS may tune Ca2+ signaling, providing evidence that Ca2+ proteins and 

channels are redox sensitive and modification helps orchestrate the complex behavior 

[14]. Through the technologies of microfluidics and computational modeling, it is 

possible to study individual cells through time and elucidate key network features and 

fundamental phenotypic differences between cells within a population. 
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 This study sought to understand H2O2 regulation and the effects of connections 

with Ca2+ during T cell activation with the overarching hypothesis that frequency 

response analysis provides a novel understanding of the complex signaling network. The 

main rationale for this work is that single-cell analysis of H2O2 production and Ca2+ 

signaling dynamics in T cells will better enable understanding of the realm of potential 

single-cell responses to give insight into the underlying network of complex regulatory 

factors. 

 

1.1 Research Objectives and Specific Aims 

The main objectives of this research are to further develop and create new computational 

and microfluidic tools for use in better understanding T cell activation by: (1) developing 

the experimental and computational framework for dynamically stimulating and 

subsequently analyzing single-cell signals of intracellular fluorescent reporters, (2) 

measuring the filter characteristics of Ca2+ in response to H2O2 using frequency response 

analysis, and (3) uncovering localized H2O2 dynamics in response to oscillatory Ca2+ 

signaling while simultaneously observing the downstream transcriptional response. 

To address these research objectives, this dissertation has three specific aims as follows: 

 

Aim 1: Develop computational and microfluidic tools to investigate intracellular T 

cell Ca2+ signaling: This aim sought to develop computational tools for characterizing 

both a novel microfluidic platform capable of applying robust frequency stimulation to 

individual T cells and the response of cells to these oscillatory stimuli using small 

molecule dyes and fluorescent reporter proteins. We created stably transfected Jurkat T 
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cell lines with a recently developed recombinant protein capable of subcellular 

localization and H2O2 tracking. Utilizing these cells and a previously developed 

microfluidic device, we show the utility of single-cell analysis techniques and the 

multitude of responses that exist. Further, we built on this cell trapping microfluidic 

device and characterized a device capable of dynamic stimulation with oscillatory input 

signals. The initial creation of the stably transfected cell lines and methods of analysis is 

reported in Chapter 3. Chapter 4 builds upon a previously developed computational 

model to systematically interrogate cells in silico to elucidate novel underlying protein 

modifications during T cell signaling. Finally, Chapter 5 discussed two microfluidic 

devices and the characterization that confirmed our ability to deliver dynamic stimulation 

and tightly control the cellular environment of T cells with single-cell resolution. 

 

Aim 2:  Extract filter characteristics of T cell Ca2+ signaling in response to 

frequency based stimulation with H2O2: In this aim we continued to monitor single-cell 

dynamics through time to more completely characterize the response of Ca2+ to H2O2 in 

the frequency domain. To accomplish this, we extended our analysis methods to include a 

spectral analysis component that highlights frequencies of interest from single-cell traces, 

enabling an unprecedented view into the frequency domain of Ca2+ signaling. We used 

this data to create Bode plots of the cellular response, which give an indication for cell 

behavior across multiple frequencies sampled. This visualization enabled comparison 

both between cells within the population, highlighting heterogeneity, and between 

different experimental frequencies. We were able to derive transfer function fits to the 

experimental data and partitioned the data into different subsets to visualize differences in 
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the resulting systems. We also expanded the computational model from Chapter 4 and 

created an in silico method to perturb the model to reflect experimental conditions. 

Ultimately, we provide a new view of Ca2+ signaling in response to oscillatory 

stimulation and demonstrate the utility of computationally modeling complex kinetics to 

begin understanding new aspects of the signaling network. This work is presented in 

Chapter 6. 

 

Aim 3:  Characterize H2O2 production and transcriptional response to Ca2+ 

oscillation with single-cell resolution: The goal of this aim was to determine the 

immediate response of localized H2O2 production to Ca2+ signaling by exchanging the 

input and output signals from Aim 2 such that cells received a well characterized, 

oscillatory pattern of Ca2+ signaling while H2O2 production was measured. We further 

developed the microfluidic protocol from Aim 2 to utilize on chip smFISH methods for 

downstream transcription factor measurement. We found from these experiments a better 

understanding of the H2O2 response to intracellular Ca2+ signaling. Using the microfluidic 

device, we subsequently fixed and hybridized cells on-chip for measurement of 

downstream transcription factors FOS and HIF1α, which we could then relate to position 

within the trap to compare data for cells at both timescales post stimulation. With this 

approach, we gained understanding for multiple levels of regulation within the cell: 

immediate signaling events encoding downstream regulation of gene expression. This 

work is highlighted in Chapter 7. 

 



www.manaraa.com

 5 

1.2 Significance of Results 

T cell signaling involves the orchestration of a myriad of signaling molecules with 

disease ramifications for temporal or spatial inaccuracies of signaling events [15-19]. 

Ca2+ and H2O2, two secondary messengers, have been shown to be important for T cell 

activation [20, 21], but a clear understanding of their connections is elusive with 

conventional experimental techniques. Further, Ca2+ signaling has been shown to 

oscillate through time with differential downstream transcriptional activation dependent 

on the frequency of signaling [22]. Yet these spatiotemporal dynamics have not been 

explored in a systematic fashion due to technical limitations. Taken together, analysis of 

this system requires a tunable platform for the delivery of dynamic stimulation coupled 

with a frequency based spectral analysis counterpart to perturb and analyze cellular 

responses that give rise to a successful immune response. 

 Within this work, we develop computational and microfluidic tools to enable a 

frequency response analysis approach for studying T cell activation, a platform necessary 

for a more complete understanding of this complex network of signaling molecules. We 

were able to model the response of Ca2+ to H2O2, investigating the natural frequency that 

exists in this signaling connection and ultimately providing models capable of generating 

future experimental hypotheses. Further, we imaged the response of H2O2 production to 

Ca2+ using subcellular localized reporter proteins to examine differences in H2O2 

response within the cytoplasm and mitochondria, providing a more complete 

spatiotemporal understanding of the redox environment of Jurkat T cells. Finally, we 

found that the natural frequency of Ca2+ signaling identified in Jurkat T cells also elicited 

the highest level of transcriptional response by combining signaling studies with 
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downstream transcriptional information using a single microfluidic device. Taken 

together, we have highlighted the utility of these complementary experimental and 

computational approaches in providing additional signaling information and foresee 

additional applications in analyzing other fundamental signaling pathways. Future work 

can also build on these platforms with applications in drug screens or better 

characterization of population heterogeneity that may be responsible for differential 

disease progression or prognosis. 

 

 

Figure 1-1. Overview of dissertation. 
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CHAPTER 2  BACKGROUND 

2.1 Immune Cells and Diseases 

T cell lymphocytes are a part of the adaptive immune response and dysregulation of their 

activation has been implicated in many diseased states. T cells are characterized by a 

peptide-recognizing receptor, known as the T cell receptor (TCR), on the plasma 

membrane. Maturation of T cell occurs in the thymus, and they reside as suspension cells 

primarily in the bloodstream for activation by antigen presenting cells (APCs) to fight 

pathogens and to store immunological memory [20, 23, 24]. T cells are classified as a 

variety of subtypes, each capable of producing a unique cytokine repertoire to fulfill their 

function within the immune system [25-29]. When T cells are not activated appropriately, 

it is thought to contribute to the progression of cancer as the aberrant cells are able to 

avoid death by cytotoxic CD8+ T cells [30]. Dysregulation of CD4+ T cells are also 

associated with a host of diseases such as asthma [15], allergic reactions [16], 

autoimmunity [17], lupus [18], and tumor immunity [19].  

 Activation induces rapid proliferation and a change in signaling cascades to alter 

gene expression and ultimately cytokine release [20]. More specifically, when an APC 

engages the TCR, the kinases Lck, LAT, and Zap70 are recruited to the complex to 

activate phospholipase-Cγ (PLC-γ) [31]. Once phosphorylated, PLC-γ cleaves PIP2 to 

generate IP3, which will then bind to IP3 Receptors (IP3R) and release calcium into the 

cytoplasm [32]. T cell activation is also associated with an increase in glucose 

metabolism and a subsequent burst of ROS from the mitochondria [20]. Although not 

completely understood, these molecules work in concert to help orchestrate cell signaling 
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and the resulting immune functions of T cells following activation. Jurkat T cells were 

used throughout this dissertation, and experiments were performed on this immortal cell 

line unless otherwise stated. 

2.2 ROS and Calcium as Secondary Messengers 

2.2.1 Mitochondria as a Source of ROS 

Reactive oxygen species (ROS), such as H2O2 and superoxide, have been shown to play 

critical roles in numerous cellular processes such as signal transduction [4] and 

homeostatic regulation [5]. Many diseases, such as cancer [6], diabetes [7], aging [8], 

Alzheimer’s disease [9-12], and autoimmune disorders [13], are associated with an 

abnormally high level of ROS. Mammalian cells generally maintain energy requirements 

through aerobic respiration, which requires oxygen (O2) for the biochemical reaction to 

take place [33]. Oxidative phosphorylation, through the electron transport chain within 

the mitochondria, is a major source of both H2O2 and superoxide with a production rate 

of approximately 50-500 µmol kg-1 min-1, depending on the current metabolic rate of the 

cell [34]. 

 Superoxide is produced as a by-product of complex III in the electron transport 

chain and is disproportionated to H2O2 through superoxide dismutases (SOD1 or SOD2). 

Superoxide is unable to diffuse through the membrane, but it has not been conclusively 

excluded from anion transporters [35]. In contrast to the limited mobility of superoxide, 

H2O2 is able to both diffuse passively through the membrane and be transported through 

aquaporins [35]. H2O2 and superoxide have both been implicated in a multitude of 

signaling processes such as proliferation, apoptosis, and the cell cycle [36].  
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2.2.1.1 ROS Signaling in T Cell Activation 

Mitochondrial ROS production is necessary for T cell activation both in early stages from 

NADPH oxidase production [37] and later stages from mitochondrial ROS production 

[20, 38]. This initial burst of ROS is involved with many cellular processes during T cell 

activation. H2O2 was found in one report to dampen the MEK-ERK activation pathway 

[39] while in other reports it indirectly induces mitogen-activated protein kinases 

(MAPK) activation [40]. H2O2 treatment of Jurkat cells elicits a response similar to TCR 

engagement and it was found that protein tyrosine kinase ZAP-70 was phosphorylated in 

a dose dependent fashion with increasing H2O2 concentrations [41]. This activation of 

ZAP-70 was required for the observed activated ERK response upon H2O2 stimulation in 

T cells [42]. Clear targets of H2O2 that have emerged in literature are protein tyrosine 

phosphatases (PTPs) [43, 44]. PTPs have H2O2 sensitive cysteine residues in their 

catalytic center that inhibits activity upon reaction with H2O2 [45]. It is thought that with 

PTPs inhibited, protein tyrosine kinases (PTKs) are able to remain active during early T 

cell signaling initiation [45]. There is additional evidence in literature that H2O2 may 

oxidize cysteine residues on PTKs directly. Examples of susceptible PTKs include Src 

and Lyn, two Src family kinases [46-48]. One of the main technical limitations of 

measuring these interactions is the low concentration and spatially localized distribution 

of ROS during T cell activation. Even more confounding are studies that use populations 

of T cells that, upon isolation from blood, may have small amounts of phagocytes 

present, which create large amounts of H2O2 and can give faulty results for T cell 

production [49, 50]. Single-cell analysis is imperative for better understanding these 

interactions. 
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 Oxidative stress is characterized by the imbalance between ROS present within 

the cell and the cell’s ability to consume that ROS or repair the malfunctions associated 

with ROS [33]. The redox state of the cell is affected through the antioxidant enzyme 

systems capable of reducing ROS and repairing damage caused by ROS within the cell 

[51]. A few components of these antioxidant systems are superoxide dismutases, 

glutathione peroxidases, catalases, and peroxiredoxins. The main reducing equivalent for 

many intracellular reactions involving these enzymes is NADPH, with the oxidized form 

of NADP+ [52, 53]. 

2.2.2 Calcium as a Secondary Messenger 

Ca2+ is a ubiquitous intracellular secondary messenger that holds a plethora of roles in a 

diversity of cells. These roles encompass biological processes from conception to death, 

and are involved in proper maintenance of cells, tissues, and organisms [54-57]. Many 

examples include excitable cells, such as cardiac or muscle cells, where Ca2+ is the driver 

for contraction of cells [58-60], and neurons for propagation of action potentials [61]. 

However, Ca2+ is also involved with many non-excitable cells, where it can control gene 

expression and cell death [62]. Ca2+ cannot be chemically altered as other complex 

signaling molecules can, and as a result cells must expend large amounts of energy trying 

to properly chelate, expel, or localize Ca2+ ions within intracellular organelles to 

coordinate signaling events [55]. Many proteins exist to control calcium signaling and are 

often found on the plasma or organellular membranes, a position which allows them to 

gate calcium flux by different activation means, such as voltage, ligand, or a decrease in 

intracellular storage [55, 63].  
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2.2.2.1 Calcium Signaling in T Cell Activation 

Ca2+ is critical for the orchestration of the diverse functionality of immune T cell 

lymphocytes, such as activation upon antigen recognition, differentiation, proliferation, 

and death [2, 21, 56, 64]. Within T cells, Ca2+ is actively sequestered into the 

endoplasmic reticulum (ER) until T cell activation triggers its release [2, 64]. When 

unstimulated, T cells maintain a cytoplasmic Ca2+ concentration of ~50-100 nM, which is 

~104 fold lower than serum Ca2+ concentrations [31]. Through the store-operated Ca2+ 

entry (SOCE) mechanism, the cytoplasmic Ca2+ concentration can then rise to ~1 µM 

[65] from the release of internal stores of Ca2+ via protein channels, such as IP3R, as well 

as an influx of Ca2+ from external sources through CRAC channels [2, 21, 64, 66]. SOCE 

is thought to be mediated through the endoplasmic reticulum (ER) Ca2+ sensing molecule 

STIM1 and a plasma membrane protein, ORAI1, which is capable of forming pores [2, 

64, 67-69]. Following stimulation, the Ca2+ concentration can return to the baseline 

within ~100 sec [65]. 

2.2.2.2 Oscillatory Calcium Signaling 

With such a diverse array of downstream events coordinated with the same upstream 

Ca2+ ion, the field of Ca2+ studies is shifting to investigate the temporal and spatial 

aspects of Ca2+ signaling, taking into consideration not only the amplitude of response, 

but also the temporally varying oscillatory pattern [21, 70]. Such a view of the system 

helps to determine how specificity can be achieved despite the universality of Ca2+ 

signaling. In other words, specific dynamic signals can be decoded by the cell to interpret 

what information a particular Ca2+ signal is conveying for the appropriate downstream 

response [71]. 
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 The unexpected phenomena of cytoplasmic Ca2+ oscillation is thought to be a 

result of the stochastic distribution of IP3R within the membrane and the result of calcium 

flooding the cytoplasm from external sources [72, 73]. This feature of Ca2+ signaling 

profiles illustrates the ability for calcium signals to produce complex signals as opposed 

to molecules that produce binary state switches [65]. It has been shown that low levels of 

stimulation results in 5-10 mHz Ca2+ oscillations within the T cell [74]. The importance 

of these oscillations can be seen in studies highlighting differences in activation of 

specific transcription factors, such as NFAT and NF-κB [22, 32]. It is hypothesized that 

Ca2+ decoding is achieved through the on-off kinetics of Ca2+ interactions with kinases 

and phosphatases [70]. Many proteins are thought to have this capability to decode 

signals, such as PLC-γ [75, 76], protein kinase C [77] and the mitochondrial calcium 

uniporter [70, 78]. Yet these molecules will show differences in dependence on 

frequency, duration of signaling, and duty cycle, demanding technology capable of 

applying accurate, finely tuned input signals for large screens of Ca2+ signaling. Further, 

with such complex and heterogeneous signaling behavior, analysis techniques are 

required for determining the response of cells in the frequency domain, a facet of 

signaling only recently explored for non-excitable biological cells.  

2.2.3 Cross-talk Between Calcium and ROS 

As Ca2+ and ROS molecules are described in isolation above, we now shift to the cross 

talk between the two signaling molecules. In muscle cells containing both ER and a 

specialized organelle sarcoplasmic reticulum (SR), ROS is able to activate calcium 

release channels [79-81]. Furthermore, there are reviews that generalize these interactions 

to encompass more cell types [82-84].  
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 More specifically, oxidation of both ER membrane channels, IP3R and RyR, 

increases the channel activity in early calcium signaling events [85-87]. It has been 

shown that mitochondrial relocalization occurs during T cell activation, potentially 

bringing these ROS molecules closer to the area and creating stochastic modulation of the 

Ca2+ release channels [88]. Mitochondria are also noted for their ability to buffer the 

increase in cytoplasmic Ca2+ concentration through the VDAC channel during this 

translocation [89] and the increase in mitochondrial Ca2+ concentration triggers 

mitochondrial permeability transition pore opening and enhances ROS production [90]. 

Two other molecules mentioned above, STIM1 and ORAI1, are susceptible to oxidation 

and may implicate ROS in being responsible for the delay in opening of the CRAC 

channel [91]. Other channels, such as SERCA [92], [93] and PMCA [94, 95] have also 

been shown to be affected by ROS through oxidative posttranslational modifications [96]. 

 The molecules STIM1 and ORAI1, part of the SOCE, have conflicting evidence 

of ROS regulation in the literature. As reported in [97], oxidation is thought to play a 

positive role in STIM1 signaling as S-glutathionylation of STIM1 is thought to decrease 

Ca2+ binding, leading to constitutive activation of CRAC channels. However, conflicting 

evidence in [98] suggested a negative role of oxidation through binding of STIM1 to 

ERp57, the ER oxidoreductase, and ultimately inhibition of SOCE. Similarly, ORAI1 

was reported to be both positively [3] and negatively [14] regulated by H2O2. It was 

shown in [3] that ORAI1 is activated in a STIM1 dependent manner after being exposed 

to H2O2, whereas [14] suggests ORAI1 in inhibited by oxidation of Cys195 by H2O2. 

These conflicting reports demonstrate the difficulty in identifying specific roles of 

molecules during intracellular signaling and highlight the opportunity for a more 
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mechanistic way of analyzing these events through a systems biology approach of 

investigating the cross talk between calcium and ROS.  

 For this project, we used microfluidic platforms to garner single-cell data to be 

used in conjunction with a computational modeling approach to systematically 

investigate the frequency dependence of Ca2+ signaling to an oscillatory H2O2 stimulus. 

Although interactions are observed between these signaling molecules, most techniques 

study one facet of studying in isolation, and often utilize end point population assays, 

such that populations of cells are lysed and analyzed as a bulk measurement. Often, these 

measurements of ROS cannot be contributed to specific oxidants and provide very little, 

if any, detail of cellular localization within the cell. Thus, innovative platforms 

combining technology for single-cell analysis with proper H2O2 probes will precipitate 

novel biological understanding of the connections between signaling molecules with 

respect to their spatiotemporal dynamics, giving a more complete picture of intracellular 

T cell signaling and ultimately potential targets for therapeutic use. 

2.3 Technology for Analyzing T Cell Signaling 

Stochastic fluctuations in gene expression can create differences in protein expression 

and ultimately in phenotype [99, 100]. Such differences in phenotype can lead to 

different cell fates [101] or cell functionality [100]. Current techniques, such as flow 

cytometry, mask the heterogeneity within a population of cells by analyzing populations 

of cells instead of single-cells. Flow cytometry will measure a single-cell at a given time 

point, but cannot measure that cell through time, thus preventing the ability to get time 

course data on single-cells. For adherent cells, it is possible to use high-resolution 

microscopy through time but this technique is difficult on suspension cells, such as T 
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cells, which can drift out of the focal plane. To overcome this challenge, we will be 

utilizing and modifying an existing microfluidic device capable of passively trapping 

suspension T cells [102]. Once trapped, we are able to collect data that allows for the 

quantification of signaling network components using a systems biology approach to 

shed light on the overall system [103]. 

2.3.1 Microfluidic Techniques 

Biological samples can be manipulated on the micron length scale, in volumes in the pL 

range, with the growing field of microfluidics [104]. Many techniques in microfluidics 

have introduced their use in studying complex biological systems [105-108] and creating 

more uniform handling and precise environmental treatment as a result of easily 

attainable laminar flow conditions on chip [109, 110]. Microfluidic devices for 

suspension cells have been developed to lyse and analyze cells on chip [111].  

 Advances in design have led to chips capable of imaging single-cells through time 

[107, 108], although it was historically more difficult to trap individual suspension cells 

as they would float and thus not maintain a constant position within the trap. A 

microfluidic device was previously developed in a collaboration with our lab that is 

capable of trapping up to 4000 individual T cells in 8 different chambers through passive 

hydrodynamic focusing [102]. Once loaded, these T cells can be imaged through time 

using an epifluorescent microscope [102, 112]. The 8 cell traps can be placed 

downstream other device features such as a linear serial dilution generator creating 

different solute concentrations while maintaining an internal control for flow rate on chip 

[113]. However, applying dynamic stimulation is thwarted from high residence time of 

solutes traveling to the chambers due to the limitation of shear stress on the cells. This 
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high residence time allows the solutes to diffuse and not maintain the plug like delivery 

of dynamic soluble cues. Other microfluidic devices are capable of delivering tunable 

stimulation profiles to adherent cells due to the higher allowable flow rate [114, 115]. 

2.3.2 Computational Modeling Techniques 

As previously mentioned, cells are constantly collecting and reviewing information from 

their external environment to be processed through a set of connected intracellular 

signaling networks, ultimately resulting in phenotypic changes when deemed necessary 

by the cell. In other words, cells receive these inputs from a variety of sources and cells 

constantly review them to produce appropriate outputs. Complicating factors of this 

system are nonlinear, stochastic, and redundant properties of signaling pathways [116]. It 

is thought that although there are hundreds of reactions within a given signaling network, 

only a few of them drive system dynamics although it is difficult to ascertain which ones. 

Many models have attempted to account for all known reactions, but are only 

occasionally successful [117-119]. This approach is often hindered from missing 

parameters or interactions [117]. Control-based computational models have been 

developed to try to unveil complex interconnected networks of signaling molecules to 

identify and model only dominant interactions within the network by characterizing the 

behavior of a system to its response to sinusoidal inputs.  

 Frequency response models exist for the osmotic stress response in S. cerevisiae, 

in which simulated oscillations were delivered to the organism and amplitude and phase 

responses were measured [117]. Another model of S. cerevisiae focused on the galactose 

response pathway and discovered a previously unknown level of regulation by using 

periodic changes in carbon source to drive changes in gene regulation [120]. Other 
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frequency response models have focused on E. coli and the chemotactic response to 

varying environmental stimuli and the interaction between signaling modules [121]. The 

key to these control theory based modeling approaches comes in the experimental design 

in which techniques were developed to deliver these time varying stimuli [116]. These 

platforms require the ability to finely tune dynamic stimulation while enabling time 

course measurement of fluorescent reporter proteins of interest. Current techniques do not 

allow this manipulation for suspension T cells without first binding cells to the coverslip, 

an action that could render signaling alterations. To overcome these experimental 

limitations, I present the techniques developed in our lab to deliver robust, tunable 

dynamic stimulation to suspension cells in vitro and the subsequent analysis that reveals 

Ca2+ signals encoded in the frequency domain.  

2.4 Motivations for Research 

Cells are continuously integrating dynamic environmental cues and altering their 

signaling pathways to reflect the environment. Many current biological techniques 

involve bolus addition of stimulants, resulting in a single step concentration profile 

change. New techniques, founded in control theory engineering, seek to deliver dynamic 

stimulations, to observe a phenomenon of interest in the frequency domain. This 

approach seeks to interrogate complex signaling environments in an unprecedented 

fashion to ultimately better understand dominant pathways within intracellular networks. 

While experimental protocols exist for frequency response analysis in particular model 

organisms and cell systems, a technique has not previously been developed for 

suspension cells with low shear stress capable of being paired with time-lapse fluorescent 

microscopy. The innovation of this research comes with the concerted efforts of 
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microfluidics, frequency response analysis, computational analysis techniques, such as 

modeling and single-cell analysis, and fluorescent reporters within T cells for Ca2+ and 

H2O2. These new experimental and computational approaches lead to the significance of 

the research in further advancing the understanding of T cell activation and the role of 

Ca2+ and H2O2 interplay, potentially highlighting or predicting therapeutic targets to 

explore in future studies. This dissertation seeks to expand the applicability of frequency 

response analysis by introducing a microfluidic device capable of delivering robust, 

easily tunable dynamic stimulation profiles and collecting single-cell T cell data through 

time using fluorescent microscopy.  

 The frequency response analysis platform created was then utilized to combine 

signaling response with downstream transcriptional outcome to oscillatory Ca2+ 

stimulation; illuminating downstream effects of these encoded oscillatory Ca2+ signals. 

Overall, we sought to explore the connections between Ca2+ and H2O2 in intracellular T 

cell signaling by utilizing dynamic, oscillatory perturbations and subsequent spectral 

analysis. We highlight previously uncharacterized filter characteristics of the system with 

an innovative platform combining microfluidics and computational approaches for data 

analysis and modeling. Further, we combine a recently developed H2O2 sensor with our 

platform to demonstrate the universality of the platform to different applications while 

furthering our understanding of H2O2 signaling in response to Ca2+ oscillations. Finally, 

we again utilize the device to connect downstream transcriptional responses to upstream 

signaling using smFISH for single-cell mRNA transcript counts. Taken together, this 

dissertation represents advancement in the technological tools necessary for a frequency 
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response analysis approach for capturing single-cell dynamics and computational 

methods for a more systematic method to address complex biological questions.  

 

.  
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CHAPTER 3  SINGLE-CELL ANALYSES AND OBSERVED 

HETEROGENEITY OF REDOX SIGNALING IN RESPONSE TO 

ANTIMYCIN A 

This chapter was adapted from Kniss, A., et al., A microfluidic systems biology approach 

for live single-cell mitochondrial ROS imaging. Methods Enzymol, 2013. 526: p. 219-30. 

[112] 

3.1  Introduction 

 Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, have 

critical roles in numerous cellular processes including signal transduction and have been 

found to be abnormally high in many diseases such as cancer [6] and autoimmune 

disorders [13]. A major source of ROS is the electron transport chain in the mitochondria, 

which produces superoxide and hydrogen peroxide. It has been estimated that 

mitochondrial respiration accounts for 50-500 µmol kg-1 min-1 cellular ROS, depending 

upon the metabolic rate of the cell [34]. 

 Two ROS produced in the mitochondria are superoxide and hydrogen peroxide. 

Superoxide is generated in the mitochondria as a by-product of complex III in the 

electron transport chain (Figure 3-1) and can be disproportionated to H2O2 via manganese 

superoxide dismutase (MnSOD1 or SOD2) [122, 123]. 
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Figure 3-1: Schematic of mitochondrial ROS production.  

The electron transport chain is composed of four main complexes that allow electrons to 

be transferred, driving ATP production. Superoxide is a by-product of respiration and can 

be disproportionated to hydrogen peroxide via SOD2. Antimycin A is a complex III 

inhibitor shown to increase the rate of production of mitochondrial ROS by inhibiting the 

flow of electrons to cytochrome c.  

 

 H2O2 can both diffuse through the mitochondrial membrane and be transported 

via aquaporins [35, 124-126]. Although superoxide cannot diffuse through the 

membrane, transport has not been definitively excluded from anion transporters. They are 

both implicated in different signaling processes, such as proliferation, apoptosis, and the 

cell cycle [36]. Fluorescent indicators exist for both reactive oxygen species. MitoSOX is 

an irreversible small molecule dye capable of localizing to the mitochondria and 

fluorescing upon oxidation by superoxide. This dye is commonly used as it is well 

studied and shows exclusive sensitivity to superoxide with 4 x 106 M-1s-1 as the rate-

limiting step of oxidation by superoxide [127, 128]. H2O2 has historically been more 

difficult to image with controversy surrounding H2DCF-DA measurements [129]. The 

recombinant protein, HyPer, has been developed from cpYFP and Oxy-R and is capable 

of changing conformation upon oxidation by H2O2 [130-132]. Once transfected into cells, 
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the reporter protein is capable of providing ratiometric measurements with the correct 

microscope set-up with two excitation filters and one emission filter [130-132]. 

 Stochastic fluctuations in transcriptional and translational regulators within a cell 

are now considered influential to differences in cell behavior [99, 133, 134]. Such 

differences can be masked by techniques that analyze populations of cells instead of 

single-cells. For instance, flow cytometry analyzes individual cells at single time points 

but cannot track a single-cell through multiple time points. With single time point 

measurements, kinetic differences between individual cells in the response to a stimulus 

are not observed. High magnification imaging through time can address this problem for 

adherent cells, but for T cells and other suspension cells, this can be difficult as the cells 

may drift out of the focal plane. Advances in microfluidic design offer an alternative 

approach to studying these differences by i) passively trapping and analyzing the 

fluorescence of cells through time [102] and ii) allowing quantification of components of 

signaling networks within a single-cell and then applying these findings to an overall 

system [103].  

 The ability to track individual cells through time will lead to a more complete 

understanding of redox signaling and ultimately more insight into diseased states. In this 

chapter, we discuss methods for utilizing microfluidics to analyze mitochondrial 

superoxide and H2O2 responses to an oxidative stimulant, antimycin A, among single-

cells in a high-throughput manner. While our analysis is limited to one reporter molecule 

at a time, ultimately other fluorescent measurements can simultaneously be performed in 

multicolor live imaging microscopy (e.g. calcium, pH, mitochondrial membrane 
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potential, etc.) to provide insight in how variations in mitochondrial function influences 

behavior across an array of cells. 

3.2 Materials and Methods 

3.2.1 Microfluidic Platform 

3.2.1.1 Densely Arrayed Single-cell Trapping Device 

 A previously developed microfluidic device was utilized for imaging 

mitochondrial ROS production in the Jurkat T cell line through time [102]. This high-

throughput single-cell trapping device has the capability to hold approximately 4000 total 

cells in eight different trap arrays [102]. Each array contains 25 traps per row and 20 

rows. The device is compatible with any mode of optical microscopy, so imaging can be 

done at different magnifications and, with a motorized stage, multiple chambers can be 

imaged within seconds (Figure 3-2). The traps can also be placed downstream of different 

microfluidic platforms, allowing for different stimulus conditions. In this study, a linear 

serial dilution generator [113] was used upstream to create a range of stimulus 

concentrations while simultaneously maintaining consistency in flow rate, dye loading, 

etc. between chambers containing cells from the same cultured population. 
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Figure 3-2: Device loaded with cells.  

Single-cell analysis of mitochondrial superoxide production using MitoSOX Red 

Mitochondrial Superoxide Indicator (Invitrogen) dye in microfluidic cell traps. (A) 10x 

view of approximately 160 single-cell traps with MitoSOX labeled Jurkat cells. (B) 20x 

view of traps. 

3.2.1.2 Device Preparation 

 Devices were molded in a polydimethylsiloxane (PDMS) A and B mixture of 10:1 

using a SU-8 master mold developed in previously described methods [102]. Devices 

were cut and holes were punched using a 19-gauge needle. The prepared devices were 

bonded via oxygen plasma to a 1 mm glass slide for imaging and polyethylene (PE3) 

tubing (Scientific Commodities) was used for all connections with solutions. Initially, the 

device was primed with a 2% bovine serum albumin (BSA) in PBS solution. This 

removes any air bubbles from the channels and prevents unintentional cell adhesion to 

the walls or glass slide. Once primed, the cells were loaded at a concentration of 4 x 106 

cells/mL using gravity flow and the optimized flow rate of ~ 2 μL/hour found previously 

was used for all treatments [102]. 
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3.2.2 Microscope System and Image Analysis 

3.2.2.1 Microscope Setup 

 Once bonded to a glass slide, the cell trap device is placed on a 37°C heated stage 

and imaged using a Nikon Eclipse Ti inverted epifluorescent microscope (Figure 3-3). 

Inlet tubing for flow of buffer and/or stimulus was set approximately 40 cm above the 

outlet tubing to allow for a gravity-based pressure-driven flow of liquid through the chip. 

Time-lapse microscopy was performed on an automated stage with a 0.7 s delay between 

imaging the separate chambers with an exposure time of 900 ms. Images were collected 

every 30 s for 70 minutes. All images within a given video were set to the same look-up 

tables (LUTs) to avoid digital differences between images during image analysis. 
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Figure 3-3: Device position with respect to microscope.  

Device is plasma bonded to a glass slide with tubing connections to treatment solutions 

and outlet. Slide is placed on a motorized stage set to 37°C. Filter cubes are utilized for 

appropriate excitation and emission wavelengths. 

3.2.2.2 Image Analysis 

 MATLAB® (MathWorks) scripts were written and utilized for image analysis of 

the time-lapse videos. The fluorescent image was converted to a binary image to identify 

the fluorescent cells in the trap array. To ensure cells present during the entire experiment 

were selected, both the first and last images were converted to a binary image using a 

MATLAB® built-in global threshold function, “graythresh”. Next, manual selection was 

performed to select the cell areas to analyze, based on presence in both the first and last 

binary images. The mean fluorescence was then calculated for each region of interest. To 

remove differences in background fluorescence between frames, the average fluorescence 

of a non-occupied portion of the trap was calculated and subtracted from each region of 

interest at each time point. This ensures differences in intensities were less reliant on 
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background noise. To normalize each cell individually, measurements are divided by the 

first mean intensity for that region of interest. 

3.2.3 Cellular Conditions 

3.2.3.1 Cell Culture 

 The Jurkat E6-1 human acute T cell lymphoma cell line (American Type Culture 

Collection) was cultured at 37°C in a humidified 5% CO2 incubator in RPMI 1640 

Medium without Phenol Red and with L-glutamine (Sigma-Aldrich), with 10 mM 

HEPES buffer, 1 mM sodium pyruvate, 100 units/mL penicillin-streptomycin (Cellgro), 

1x MEM Non-Essential Amino Acids, and 10% fetal bovine serum (Sigma-Aldrich). 

3.2.3.2 MitoSOX Treatment 

 To visualize the presence of mitochondrial superoxide, Jurkat cells were 

incubated with 5 μM MitoSOX Red Mitochondrial Superoxide Indicator (Invitrogen) for 

10 minutes at 37°C, according to previous protocols [127]. Following incubation, cells 

were washed three times with 4°C sterile phosphate-buffered saline (PBS) and 

resuspended in 250 μL RPMI Phenol Red-free media to be loaded in the device at a final 

concentration of 4 x 106 cells/mL. Once loaded in the device, cells were imaged using the 

TRITC (540/605 nm) filter cube (Nikon) and stimulated with antimycin A (Sigma-

Aldrich) at various concentrations. Individual cells were tracked through time and a heat 

map (“imagesc”) was created to visualize the change in intensity, related to change in 

mitochondrial superoxide production, through time. 
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3.2.3.3 Stable Transfection of Jurkat Cell Line with HyPer Plasmid 

 To visualize the dynamics of mitochondrial H2O2 through time, the pHyPer-dMito 

plasmid (Evrogen) was transfected into Jurkat cells using the Neon Transfection System 

(Life Technologies). Jurkat cells were cultured until logarithmic growth was observed 

and then washed in PBS without Ca2+ and Mg2+.  

 Cells are resuspended in Resuspension Buffer R (Invitrogen Neon Kit) at a final 

concentration of 1 x 107 cells/mL with 10 μg DNA per 100 μL transfection. Four 100 μL 

transfections were completed using the Neon protocol of 3 pulses of 1325 V with a 10 ms 

pulse width. Once transfected, cells were cultured for 3 days without antibiotics. 

Selection was completed using the neomycin resistant gene on the pHyPer-dMito 

plasmid. On day 4, 1.4 mg/mL active neomycin (G418) (KSE Scientific) was added to 

the media with a cell concentration of approximately 0.2 x 106 cells/mL. The selection 

was continued for 14 days with washing and addition of fresh media and antibiotics every 

3 days, maintaining the cell concentration between 0.2-0.6 x 106 cells/mL. The 

concentration of G418 was calibrated via a cytotoxicity curve with the same lot of G418 

(KSE Scientific) using the reported active concentration. Following selection, a 

maintenance concentration of 0.6 mg/mL G418 was continued in cell culture. Cells were 

loaded into the device at a concentration of 4 x 106 cells/mL. Once sufficiently loaded, 

antimycin A (Sigma-Aldrich) was introduced at various concentrations. Cells were 

imaged using the QMAX GR TE-10 filter set (Omega Optical), as recommended by 

Evrogen for non-ratiometric imaging of the Hyper reporter protein. The filter set for 

excitation between 450-490 nm and emission filter at 535 nm primarily represents the 

oxidized form of the mitochondrial H2O2 sensor, HyPer-Mito.  
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3.3 Results 

3.3.1 Imaging Mitochondrial Superoxide Production 

 Within a chamber with uniform antimycin A concentration, we observed 

individual cellular differences in mitochondrial superoxide production (Figure 3-4). With 

an irreversible dye, a monotonic increase is expected over the 70 min experiment. In 

several instances, lower fluorescence was observed with time; this may be due to rotation 

of the trapped cell with respect to the focal plane of imaging, photo bleaching of the dye, 

or inaccuracies in creation of the binary images.  On average, we observed an increase in 

MitoSOX Red oxidation with increasing antimycin A concentration (Figure 3-4 a,c) as 

well as the number of cells that respond to the stimulatory condition as defined by an 

increase greater than 40% the original fluorescence. In the example shown, there were 7 

responsive cells in the 1.6 μM inhibitor treatment compared to 16 responsive cells in the 

50 μM inhibitor concentration. 
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Figure 3-4: Mitochondrial superoxide production with antimycin A stimulation.  

(A, C) 1.6 µM antimycin A treated cells (blue arrow). (C, D) 50 µM antimycin A treated 

cells (blue arrow). (A, B) Heat map of normalized mean fluorescence of 25 analyzed cells 

through time. (C, D) Average and single-cell traces of mean fluorescence.  

 

3.3.2 Imaging Mitochondrial Hydrogen Peroxide Production 

 Images were collected over the course of 70 min and reveal differences in H2O2 

signaling between different cells under the same antimycin A concentration (Figure 3-5). 

As with the MitoSOX Red, we observed an increase in fluorescence intensity associated 

with oxidized HyPer-Mito as the concentration of antimycin A increased (Figure 3-5 a,c). 

With a reversible ROS reporter, however, the observed kinetics were more diverse at the 

single-cell level. At the 1.6 μM inhibitor concentration, the cells that respond tend to do 

so similarly in a steadily increasing manner (Figure 3-5 a,c), whereas cells at the 50 μM 

concentration vary in both the time to respond, and whether the H2O2 is sustained or 

changes with time.  



www.manaraa.com

 31 

Figure 3-5: Mitochondrial hydrogen peroxide production with antimycin A stimulation. 

(A, C) 1.6 µM antimycin A treated cells (blue arrow). (C, D) 50 µM antimycin A treated 

cells (blue arrow). (A, B) Heat map of normalized mean fluorescence of 25 analyzed cells 

through time. (C, D) Average and single-cell traces of mean fluorescence. 

 

 Differences can also be seen in the number of cells to respond, as defined by a 

40% change from baseline. In the example shown, there were 5 responsive cells in the 1.6 

μM inhibitor treatment compared to 12 responsive cells in the 50 μM inhibitor 

concentration. The quantity of cells responding was lower than that observed with 

MitoSOX. 

3.4 Discussion 

 

 We have demonstrated the potential to use microfluidics to study time-dependent 

changes of two different mitochondrial ROS in single-cells, thus supporting redox 

systems biology at the level of single-cells. Further, we provide the ability to study 
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heterogeneity of these processes in different cells within a population. We report that 

cells exposed to the same concentration of stimulus exhibited variation in mitochondrial 

ROS production, which could ultimately result in different cellular responses. This 

variation could be the result of stochastic processes within the cell, such as transcriptional 

or translational regulation of key components of the mitochondrial ROS pathway. 

Additionally, the nature of the responses differed between O2
- and H2O2 kinetics. Because 

two different types of fluorescent reporters (irreversible small molecule vs. YFP-fusion 

protein) were used, it is difficult to ascertain without further analysis whether variation at 

the single-cell level is attributed to properties of the reporter or due to subcellular 

concentrations of the respective ROS. To our knowledge, this is the first description of 

the use of microfluidics to image and quantify single-cell redox states in mammalian T 

cells, a method that may help elucidate underlying dysfunctions in different cell types and 

diseases. Accounting for distributions of mitochondrial redox state within populations of 

cells will ultimately allow for a better understanding of signaling processes associated 

with diseases that implicate mitochondrial dysfunction, such as Alzheimer’s disease [9], 

autoimmune disorders [135], and cancer [6]. 
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CHAPTER 4  COMPUTATIONAL MODELING OF AGE 

DEPENDENT DIFFERENTIAL INTRACELLULAR CALCIUM 

SIGNALING DURING T CELL ACTIVATION 

4.1 Introduction 

4.1.1 T Cell Activation and Immunosenescence 

There are two facets of the immune system in humans with over 1600 genes involved in 

regulation: the innate and adaptive response [136, 137]. Innate immunity is the first 

defense mechanism against pathogens and is comprised of many cell types, such as 

dendritic cells, macrophages, and neutrophils [136, 138]. Innate immunity becomes 

activated through an inflammatory response and, if unable to control and eradicate an 

infection, contributes to the activation of the adaptive immune response [138]. During the 

adaptive immune system stimulation, T cells become activated by antigen presenting 

cells (APCs), such as dendritic cells, which help to inform the adaptive immune system 

of the pathogenic threat [139, 140].  

 APCs ligate and activate the TCR via peptide presentation on the major 

histocompatibility complex (MHC) [141]. TCR ligation provokes the activation of 

tyrosine kinases and ultimately the phosphorylation of PLC-γ [142, 143]. PLC-γ cleaves 

phosphatidylinositol 4,5-bisphosphate (PIP2), present on the plasma membrane, to form 

IP3 and DAG. IP3 binds to IP3R on the ER membrane to rapidly release Ca2+ from 

intracellular ER stores and store-operated Ca2+ entry (SOCE) channels on the plasma 

membrane enable a sustained calcium response, ultimately dictating gene expression and 

T cell function [54]. SOCE channel activation is dependent on STIM1, an ER Ca2+ 
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sensing molecule and its partner, ORAI1, which is a pore-forming plasma membrane 

protein [144]. Together, these molecules activate SOCE via CRAC channels on the 

plasma membrane [2, 69]. 

 Immunosenescence encompasses the age-related alterations within the immune 

system that result in a less effective immune response in elderly individuals [145, 146]. 

Most notably, these changes include a reduction in naïve peripheral T cells from 3 x 109 

to 7 x 108 as well as a decrease in repertoire diversity by two orders of magnitude [145, 

147, 148]. In addition to the number of cells, T cell function also declines with age 

leaving elderly individuals with fewer and less effective T cells at warding off cancer, 

infections, and autoimmune disorders [149, 150]. It has been shown that T cells undergo 

a redox shift upon activation with CD28 with decreased levels of reduced glutathione and 

increased reactive oxygen species (ROS) production [4, 151], which may upregulate 

TNFα [152]. Another redox protein, thioredoxin, has been shown to be differentially 

regulated, based on age, and is involved with redox pathways within T cells [153]. T cell 

responses are attenuated in elderly individuals, potentially due to low but persistent levels 

of pro-inflammatory cytokines and increased ROS production [154-159]. Ultimately, the 

underlying mechanisms of T cell functional decline have not been fully elucidated, but 

studies confirm development of defects in Ca2+ signaling in response to mitogenic 

stimulation during immunosenescence [160, 161].  Many proximal events in TCR 

signaling or cytokine responses are differentially regulated with age, such as reduced 

protein tyrosine kinase activation, ultimately reducing Ca2+ signaling and subsequent NF-

κB and NF-AT levels [23, 145, 152, 154, 156]. CD8+ T cells from aged mice are shown 

to have a diminished activation-induced Ca2+ flux [162, 163], and this was mirrored in 



www.manaraa.com

 35 

CD4+ T cells in elderly humans [164, 165], but CD8+ T cells from elderly humans 

showed a significantly greater Ca2+ response upon activation with CD3 mAB [166]. 

Interestingly, the proliferation response of activation between elderly and younger donors 

showed no difference in CD4+ T cells and a reduction in CD8+ T cells in elderly humans, 

suggesting the reduced proliferation in CD8+ T cells does not contribute to the decrease 

in Ca2+ signaling function [166]. Due to the complexity of signaling events and plethora 

of data suggesting changes in aging T cells, computational modeling was used to provide 

new experimentally testable predictions. 

4.1.2 ODE Mechanistic Models of T Cell Activation 

Due to the universality of Ca2+ signaling in numerous cell types, there is a substantial 

body of literature available for modeling Ca2+ dynamics. Ca2+ signaling is often described 

via models in excitable cells, most notably neurons [167-171], cardiomyocytes [172-

181], and muscle cells [182-185]. Ca2+ signaling, specifically during T cell activation, is 

less often modeled. Two deterministic models have been published describing Ca2+ 

kinetics in Jurkat [186] and murine T cells [187], but these models do not include 

extracellular space or mitochondrial Ca2+ buffering and the complex protein interactions 

of SOCE. Maurya et al. introduced a more detailed mechanistic model of Ca2+ signaling 

in immune cells that is capable of predicting Ca2+ concentration temporal profiles in 

RAW 264.7 macrophages for different stimulation and network alterations [188, 189].  

 Previous experimental work in our lab has used an in vitro aging framework for 

CD8+ T cells to unveil decreased protein phosphorylation after TCR ligation [160, 190-

193]. It was hypothesized, based on in vivo data and the finding of decreased protein 

phosphorylation, that Ca2+ signaling would be reduced in older T cells. Instead, our lab 
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observed both a faster Ca2+ rise and subsequent decay as T cells aged. After gene 

expression analysis by RT-qPCR revealed overexpression of the plasma membrane 

CRAC channel, ORAI1, and PMCA in older T cells, we adapted the Maurya model [188, 

189] to include additional details to determine if these changes were sufficient to explain 

the differences in the Ca2+ dynamics of older T cells. Through this process, we found that 

the results of the model show upregulation of ORAI1 and PMCA are not sufficient to 

recreate the observed dynamics and predicts changes in kinetic parameters associated 

with the IP3R and SERCA channels as potential causes of altered Ca2+ signaling. Through 

computational modeling, we uncovered previously unexplored interactions of Ca2+ 

kinetic parameters, ultimately providing a novel understanding of ROS modulation of 

STIM1 in immunosenescence.  

4.2 Materials and Methods 

The model description is modified, with permission from [194] to include updates to 

equations and optimization framework. 

4.2.1 Model Description 

We expanded previously developed computational models [188, 195-197] for calcium 

signaling after T cell receptor ligation, which now consists of a simplified model for IP3 

formation and calcium fluxes for the cytosol, ER, mitochondria, and extracellular space. 

As can be seen in Figure 4-1, the mechanistic model we compiled and characterized 

incorporates the binding of peptide presented on MHC with TCR to recruit tyrosine 

kinases Lck, LAT, and Zap70 to the TCR/CD3 complex, which activates PLC-γ, as a one 

step input to phosphorylated PLC-γ levels. Once activated, PLC-γ is modeled as cleaving 

PIP2 on the plasma membrane to generate both DAG and IP3. IP3 subsequently binds to 
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the IP3 receptor, releasing Ca2+ stored in the ER (JIP3). Once ER Ca2+ levels drop, the ER 

Ca2+ sensor, STIM1 is activated, translocates to the interface between the ER and plasma 

membrane (ER-PM) to activate a longer lasting, sustained influx of Ca2+ to the cytosol 

from extracellular space via CRAC channels (Jcrac) [68, 198]. PMCA on the plasma  

membrane pumps Ca2+ to extracellular space and maintains the concentration gradient 

between the cytosol and the cellular environment (Jpmca). With such a steep gradient, one 

assumption of the model is a small Ca2+ leak through the plasma membrane back into the 

cytosol (JPMleak). SERCA pumps on the ER membrane pump Ca2+ from the cytosol into 

the ER, again maintaining a gradient between the ER organellular Ca2+ concentration and 

the cytosol (Jserca). As with the plasma membrane, we assume a small leak back to the 

cytosol with such a steep gradient (JERleak). Mitochondria play a role in buffering 

cytosolic Ca2+ to enable proper activation and maintenance function of SOCE, thus 

preventing the negative feedback of increasing Ca2+ concentrations on the CRAC 

channels [88, 199, 200]. Ca2+ uptake into the mitochondria is accomplished through the 

Ca2+ uniporter (Jmitin) and released back into the cytosol via the Na+/Ca2+ exchanger 

(Jmitout).  
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Figure 4-1: Model schematic showing included species and interactions involved with T 

cell activation. 

 

 These fluxes are combined to describe the fundamental Ca2+ signaling kinetics 

between multiple cellular compartments and extracellular spaces as follows: 

𝑑𝐶𝑎𝑐𝑦𝑡

𝑑𝑡
= 𝛽𝑖(( 𝐽𝐼𝑃3 − 𝐽𝑠𝑒𝑟𝑐𝑎 + 𝐽𝐸𝑅𝑙𝑒𝑎𝑘 ) + (−𝐽𝑚𝑖𝑡𝑖𝑛 + 𝐽𝑚𝑖𝑡𝑜𝑢𝑡) 

+(𝐽𝑐𝑟𝑎𝑐 − 𝐽𝑝𝑚𝑐𝑎 + 𝐽𝑃𝑀𝑙𝑒𝑎𝑘)) 
Equation 4-1 

  

 

𝑑𝐶𝑎𝐸𝑅
𝑑𝑡

=
𝛽𝑒𝑟
𝜌𝑒𝑟

(− 𝐽𝐼𝑃3 + 𝐽𝑠𝑒𝑟𝑐𝑎 − 𝐽𝐸𝑅𝑙𝑒𝑎𝑘 ) Equation 4-2 

 

 

𝑑𝐶𝑎𝑚𝑖𝑡
𝑑𝑡

=
𝛽𝑚𝑖𝑡
𝜌𝑚𝑖𝑡

( 𝐽𝑚𝑖𝑡𝑖𝑛 − 𝐽𝑚𝑖𝑡𝑜𝑢𝑡  ) Equation 4-3 
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Cacyt and 𝛽𝑖 represent the concentration of Ca2+ and the ratio of free to total Ca2+ in the 

cytosol, respectively. Camit and 𝛽𝑚𝑖𝑡 represent the concentration of Ca2+ and the ratio of 

free to total Ca2+ in the mitochondria. Similarly, CaER and 𝛽𝐸𝑅 represent the concentration 

of Ca2+ and the ratio of free to total Ca2+ in the ER [188, 197]. From these relationships, 

the assumption is made that the ratio of free to total Ca2+ in each of the compartments 

does not fluctuate with time. We use 𝜌𝑚𝑖𝑡 and 𝜌𝑒𝑟 to correct for the difference in volume 

between the ER and mitochondria compared to the cytosol. 

4.2.1.1 IP3 Production 

As noted previously, IP3 is formed upon phosphorylation of PLC-γ following TCR 

ligation. PLC-γ phosphorylation is modeled through simplified mass action kinetics with 

ligand (R) interacting with the TCR, with 𝑘𝑃𝐿𝐶𝑎𝑐𝑡 representing the rate constant for PLC-

γ phosphorylation and, conversely, 𝑘𝑃𝐿𝐶𝑑𝑒𝑎𝑐𝑡 represents the rate for PLC-γ 

dephosphorylation. 

 

𝑑𝑅

𝑑𝑡
= −𝑘𝑃𝐿𝐶𝑎𝑐𝑡 ∙ 𝑅 Equation 4-4 

 

 

𝑑𝑃𝐿𝐶𝛾

𝑑𝑡
= 𝑘𝑃𝐿𝐶𝑎𝑐𝑡 ∙ 𝑅 − 𝑘𝑃𝐿𝐶𝑑𝑒𝑎𝑐𝑡 ∙ 𝑝𝑃𝐿𝐶𝛾 Equation 4-5 

 

IP3 production varies based on activated PLC-γ and the cytosolic Ca2+ concentration, as 

described below: 
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𝑑𝐼𝑃3

𝑑𝑡
= 𝑘𝐼𝑃3𝑝𝑟𝑜𝑑 ∙ 𝑝𝑃𝐿𝐶𝛾 ∙ 𝐶𝑎𝑐𝑦𝑡 − 𝑘𝐼𝑃3𝑑𝑒𝑔 ∙ 𝐼𝑃3 Equation 4-6 

 

with the rate constant for IP3 production and degradation, 𝑘𝐼𝑃3𝑝𝑟𝑜𝑑 and 𝑘𝐼𝑃3𝑑𝑒𝑔, 

respectively.  

4.2.1.2 Cytosolic Ca2+ Flux 

Cytosolic Ca2+ increases as Ca2+ is released from the ER through the IP3R. This model 

builds off of previous mathematical models of IP3R activation [201-205] and is given by: 

 

𝐽𝐼𝑃3 = 𝑉𝐼𝑃3 ∙ 𝑃𝐼𝑃3 ∙ 𝐶𝑎𝐸𝑅 Equation 4-7 

 

such that VIP3 is the maximal flow rate and PIP3 is the IP3R open probability. PIP3 is 

described as a function of Ca2+, IP3, and the portion of available IP3R, defined as not 

having the inhibitory site bound by Ca2+: 

 

𝑃𝐼𝑃3 = ((
𝐼𝑃3

𝐼𝑃3 + 𝐾𝐼𝑃3
) (

𝐶𝑎𝑐𝑦𝑡

𝐶𝑎𝑐𝑦𝑡 + 𝐾𝑎𝑐𝑡
) ℎ)

3

 Equation 4-8 

 

with 𝐾𝐼𝑃3 defined as the concentration of IP3 at which the half maximal observed reaction 

rate is achieved and 𝐾𝑎𝑐𝑡 is the midpoint of Ca2+-dependent channel activation. 

 The inactivated portion of IP3R is also modeled, by (1-h), as a function dependent 

on cytosolic Ca2+ and Q, defined as the effective affinity of Ca2+ to the site of inhibition. 
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𝑑ℎ

𝑑𝑡
= 𝐴((1 − ℎ)(𝑄 + 𝐶𝑎𝑐𝑦𝑡) − 𝐶𝑎𝑐𝑦𝑡) Equation 4-9 

 

𝑄 = 𝐾𝑖𝑛ℎ (
𝐼𝑃3 + 𝐾𝐼𝑃3
𝐼𝑃3 + 𝐾𝐼𝑃3𝑖𝑛ℎ

) Equation 4-10 

 

with the coefficient A controlling the difference in time scales between equations. 𝐾𝑖𝑛ℎ 

represents the Ca2+ affinity to the Ca2+ inhibitory site, and  𝐾𝐼𝑃3𝑖𝑛ℎ is the affinity of IP3 to 

the IP3 binding site when the Ca2+ inhibitory site is occupied. 

4.2.1.3 Continuous Leak of Ca2+ from ER 

It is assumed that there is a continuous leak from the ER due to the concentration gradient 

of Ca2+ between the ER and cytosol: 

 

𝐽𝐸𝑅𝑙𝑒𝑎𝑘 = 𝐾𝐸𝑅𝑙𝑒𝑎𝑘 ∙ 𝐶𝑎𝐸𝑅 Equation 4-11 

 

4.2.1.4 Ca2+ Flux into ER 

Ca2+ is sequestered in the ER via SERCA channels as modeled with: 

 

𝐽𝑠𝑒𝑟𝑐𝑎 = 𝑉𝑠𝑒𝑟𝑐𝑎 ∙
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝑠𝑒𝑟𝑐𝑎

2 Equation 4-12 

 

where 𝑉𝑠𝑒𝑟𝑐𝑎 is the maximal flux of Ca2+ through the SERCA pump and 𝐾𝑠𝑒𝑟𝑐𝑎 is the 

concentration of Cacyt at which the reaction rate is half of Vserca. Isoforms of SERCA are 

combined into a single, average SERCA pump. 
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4.2.1.5 Mitochondrial Ca2+ Flux 

Ca2+ uptake by the mitochondria is modeled according to a 4th order Hill function [206, 

207] through the mitochondrial uniporter where 𝑉𝑚𝑖𝑡𝑖𝑛 is the maximal rate of uptake and 

𝐾𝑚𝑖𝑡𝑖𝑛 is the concentration of Cacyt at which the reaction rate is half of Vmitin: 

 

𝐽𝑚𝑖𝑡𝑖𝑛 = 𝑉𝑚𝑖𝑡𝑖𝑛 ∙
𝐶𝑎𝑐𝑦𝑡

4

𝐶𝑎𝑐𝑦𝑡
4 + 𝐾𝑚𝑖𝑡𝑖𝑛

4 Equation 4-13 

 

Ca2+ is extruded from the mitochondria via the Na+/Ca2+ exchanger and permeability 

transition pores (PTP), which are combined in the equation below with 𝑉𝑚𝑖𝑡𝑜𝑢𝑡 

representing the maximal flow rate and 𝐾𝑚𝑖𝑡𝑜𝑢𝑡 is the concentration of Cacyt at which the 

reaction rate is half of Vmitout [197, 208]: 

 

𝐽𝑚𝑖𝑡𝑜𝑢𝑡 = 𝑉𝑚𝑖𝑡𝑜𝑢𝑡 ∙ 𝐶𝑎𝑚𝑖𝑡 ∙
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝑚𝑖𝑡𝑜𝑢𝑡

2 Equation 4-14 

 

4.2.1.6 Plasma membrane Ca2+ Fluxes 

Previous models and findings of Ca2+ entry to the cytosol through SOCE [196, 208-211] 

were simplified to assume the binding of STIM1 and ORAI1 is at steady state and only 

depends on the concentration of Ca2+ in the ER: 

 

𝐽𝑐𝑟𝑎𝑐 = 𝑉𝑐𝑟𝑎𝑐 ∙
𝐾𝑠𝑡𝑖𝑚
3

𝐶𝑎𝐸𝑅
3 + 𝐾𝑠𝑡𝑖𝑚

3 ∙
𝐶𝑎𝑒𝑥𝑡

𝐶𝑎𝑒𝑥𝑡 + 𝐾𝑠𝑜𝑐
 Equation 4-15 
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with the maximal Ca2+ influx through CRAC defined by 𝑉𝑐𝑟𝑎𝑐, 𝐾𝑠𝑜𝑐 is the concentration 

of Caext at which the half maximal observed reaction rate is achieved, and 𝐾𝑠𝑡𝑖𝑚 is the 

dissociation constant of ER Ca2+ to STIM1.  

 Similar to the ER membrane, because of the steep Ca2+ gradient, it is assumed 

there is a small leak of Ca2+, at a given rate 𝐾𝑃𝑀𝑙𝑒𝑎𝑘, through the plasma membrane, 

represented by: 

 

𝐽𝑃𝑀𝑙𝑒𝑎𝑘 = 𝐾𝑃𝑀𝑙𝑒𝑎𝑘 ∙ 𝐶𝑎𝑒𝑥𝑡 Equation 4-16 

 

Lastly, Ca2+ can be extruded from the cytosol via PMCA pumps into the extracellular 

space. This can be described with the following equation where 𝑉𝑝𝑚𝑐𝑎 is the maximal rate 

of this efflux and 𝐾𝑝𝑚𝑐𝑎 is the concentration of Caext at which the reaction rate is half of 

Vpmca: 

 

𝐽𝑝𝑚𝑐𝑎 = 𝑉𝑝𝑚𝑐𝑎 ∙
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝑝𝑚𝑐𝑎

2 Equation 4-17 

 

4.2.2 Parameter Optimization 

The described system of differential equations was solved using ode23s in MATLAB® 

R2014b (Mathworks, Natick, MA). This model was first developed for Jurkat T 

lymphocytes, an immortal T cell line, and subsequently fit to primary CD8+ T cells that 

were aged in culture to represent young vs. old characteristics of Ca2+ signaling. Overall, 

the model consists of 7 state variables and 29 parameters and encompasses a simplified 
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version of TCR activation and subsequent Ca2+ kinetics that arise from orchestrated 

phosphorylated proteins and activated channels. The Jurkat model was fit concurrently to 

experimental data from the literature of IP3 signaling in the presence of EGTA [212] and 

dynamic Ca2+ recordings in the presence or absence of EGTA and TMB-8. EGTA, a Ca2+ 

chelator was applied to reduce extracellular Ca2+ entry through the CRAC channels and 

PM leakage. TMB-8, an IP3R inhibitor, reduces the amount of Ca2+ released from the ER 

upon activation. To mimic these experimental conditions, two parameters 1 and 2 were 

introduced to the model equations to represent the percent reduction in extracellular Ca2+ 

and activity of JIP3, respectively. 1 is set to 0.33 and 2 was fit to 0.30. 

 Parameter estimation was achieved via a sum of squared error (SSE) function, 

taking into account the difference between collected experimental data and the model 

prediction for different parameter sets Equation 4-18. This was achieved by using either 

the genetic algorithm (ga) algorithm or a combination of the genetic algorithm (ga), 

constrained nonlinear programing (fmincon) and pattern search (patternsearch) 

algorithms in the MATLAB® Optimization ToolboxTM. For the Jurkat model, all three 

optimization algorithms were used for optimal results whereas for the Young and Old 

models, only the genetic algorithm was used because further optimization algorithms did 

not drastically reduce the error value. For estimating modeling predictions against 

different experimental conditions, the objective function was estimated below for the 

Jurkat and Young CD8+ Model: 

 

𝑆 = ∑∑∑(
𝑥𝑝𝑟𝑒𝑑(𝑐, 𝑛, 𝑡) − 𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)

𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)
)

2𝐶

𝑐=1

𝑁

𝑛=1

𝑡𝑠𝑖𝑚

𝑡=1

 Equation 4-18 
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In this equation, 𝑡𝑠𝑖𝑚 is the maximum time of simulation, 𝑁 is the number of species used 

for optimization and 𝐶 is the number of experimental conditions for computed 

comparison. The Old CD8+ Model was fit with a similar, slightly altered error function to 

account for differences in peak amplitude (𝑝𝑒𝑎𝑘𝐴𝑚𝑝 and 𝑝𝑒𝑎𝑘𝐸𝑥𝑝𝐴𝑚𝑝 for the model and 

experimental data, respectively): 

 

𝑆 = ∑∑∑

(

 
 

𝑥𝑝𝑟𝑒𝑑(𝑐, 𝑛, 𝑡)

𝑝𝑒𝑎𝑘𝐴𝑚𝑝
−
𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)

𝑝𝑒𝑎𝑘𝐸𝑥𝑝𝐴𝑚𝑝
𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)

𝑝𝑒𝑎𝑘𝐸𝑥𝑝𝐴𝑚𝑝 )

 
 

2

𝐶

𝑐=1

𝑁

𝑛=1

𝑡𝑠𝑖𝑚

𝑡=1

 Equation 4-19 

 

 Initial concentrations of species were chosen from published experimental data or 

computed at steady state and used for the initial parameter optimization with the Jurkat 

model (Table 4-1) and were allowed to vary within specified bounds (Table 4-2). 

 

Table 4-1: Initial conditions for all Jurkat model runs. 
State Variable Jurkat Model Initial 

Condition 

Primary CD8+ T Cell Model  

Initial Condition 

PLC 70 nM 70 nM 

IP3 0.54 M 0.54 M 

Cacyt 50 nM 50 nM 

CaER 350 M 280 M 

Camit 0.1 M 0.1 M 

h 0.1 0.1 

R 10 10 
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Table 4-2: Original bounds set on parameter values for parameter estimation. 
Parameter Bounds Source/Explanation 

𝜷𝒊 [0.001 1] SS value: 0.009 [68] 

𝜷𝒆𝒓 [0.001 1] SS value: 0.196 [68]  

𝜷𝒎𝒊𝒕 [0.001 1] 0.0025 [68, 198] 

𝝆𝒆𝒓 0.015 [213] 

𝝆𝒎𝒊𝒕 0.08 [213]  

𝒌𝑷𝑳𝑪𝒂𝒄𝒕 [0.001 0.01] s-1 0.047 [187]  

𝒌𝑷𝑳𝑪𝒅𝒆𝒂𝒄𝒕 [0.01 0.1] s-1  

𝒌𝑰𝑷𝟑𝒑𝒓𝒐𝒅 [0.1 1] M-1 s-1  1 [187] 

𝒌𝑰𝑷𝟑𝒅𝒆𝒈 [0.01 0.1] s-1  

𝑽𝑰𝑷𝟑 [0.05 80] s-1 0.189 [208], 3 [207], 1.11 [209], 66.6 

[211] 

𝑲𝑰𝑷𝟑 [0.1 1] M 0.136 [208], 0.13 [209], 1 [211], 3 [207] 

𝑲𝒂𝒄𝒕 [0.05 0.5]M 0.0814 [208], 0.08 [209], 0.4 [211], 0.13 

[207] 

𝑨 [0.01 0.5]  0.104 [208], 0.032 [209], 0.5 [211] 

𝑲𝒊𝒏𝒉 1 M 1 [208] 

𝑲𝑰𝑷𝟑𝒊𝒏𝒉 [0.5 1.5] M 1.05 [208] 

𝑲𝑬𝑹𝒍𝒆𝒂𝒌 [0.0005 0.05] s-1 0.002 [208], 0.02 [209], 0.0009 [211], 

 0.01 [207], 0.002 [196] 

𝑽𝒔𝒆𝒓𝒄𝒂 [0.2 250] M s-1 114 [208], 0.9 [209], 1 [211], 0.27 [207], 

1 [187] 

𝑲𝒔𝒆𝒓𝒄𝒂 [0.15 0.8] M 0.754 [208], 0.1 [209], 0.15 [211], 0.175 

[207], 0.2 [187] 

𝑽𝒎𝒊𝒕𝒊𝒏 [100 800]M s-1 300 [197], 506 [208] 

𝑲𝒎𝒊𝒕𝒊𝒏 [0.5 1.5] M 0.8 [197], 1 [208], 0.6 [207] 

𝑽𝒎𝒊𝒕𝒐𝒖𝒕 [50 500] M s-1 125 [197], 476 [208] 

𝑲𝒎𝒊𝒕𝒐𝒖𝒕 [1 10] M  5 [197, 208] 

𝑽𝒄𝒓𝒂𝒄 [0.01 10]M s-1 0.226 [208], 8.85 [196], 0.01 [186] 

𝑲𝒔𝒐𝒄 [50 1000]M  500 [196] 
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Table 4-2 continued. 
𝑲𝒔𝒕𝒊𝒎 [150 250] M 152.3 [214] 

𝑲𝑷𝑴𝒍𝒆𝒂𝒌 [2.5e-7 3.5e-5] s-1 5.6e-6 [186], 2.6e-7 [209], 4.6e-7 [207], 

3.3e-5 [208] 

𝑽𝒑𝒎𝒄𝒂 [0.01 50] M s-1 0.05 [186], 0.01 [209], 0.013 [207], 

0.0893/0.59 [208], 38 [196] 

𝑲𝒑𝒎𝒄𝒂 [0.1 0.5] M 0.12 [209], 0.2 [207], 0.113/0.44 [208], 

0.5 [196] 

𝑲𝑺𝑻𝑰𝑴𝒑𝒎𝒄𝒂 [5 450] M Range in ER Ca2+ concentration 

 

 Ca2+ kinetic traces were analyzed for peak time, peak amplitude, integral under 

the curve, and decay constants. Decay constants were calculated by fitting the decay 

portion of Ca2+ traces to a sum of exponentials using MATLAB® scripts: 

 

𝐷𝑒𝑐𝑎𝑦 =  𝐴1𝑒
𝑡
𝜏1 + 𝐴2𝑒

𝑡
𝜏2 Equation 4-20 

 

4.2.3 Sensitivity Analysis 

To determine which parameters affected specified characteristics of Ca2+ kinetics, 

sensitivity analysis was performed on the Young CD8+ Model by varying one parameter, 

p, at a time between 1 and 20% of the original value. The resulting features included peak 

time, amplitude, and decay constant of the Ca2+ kinetics and these values were compared 

to the original state of the model according to the following equation: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

∆𝑓𝑒𝑎𝑡𝑢𝑟𝑒
𝑓𝑒𝑎𝑡𝑢𝑟𝑒
∆𝑝
𝑝

 Equation 4-21 
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4.3 Results 

4.3.1 Jurkat Model Shows Adequate Fit 

Upon optimization with three MATLAB® Optimization ToolboxTM algorithms, 

parameters were found to recapitulate the cytosolic Ca2+ dynamics under described 

experimental conditions in the presence or absence of EGTA or TMB-8 (Figure 4-2). The 

model is able to predict IP3, CaER, and Camit concentrations but appropriate experiments 

in the literature were unavailable to compare (Figure 4-2). 

 

Figure 4-2: Optimization of Jurkat Model Fit.  

The fit is performed between model and experimental conditions of Jurkat T cells 

stimulated with TCR ligation in the presence or absence of inhibitors, EGTA and TMB-8. 

Parameters represented here can be found in Table 4-4.   

 

 Concerned with the abundance of parameters and scarcity of data for fitting, we 

iterated through this optimization pipeline 17 times to arrive at a unique set of parameters 

every time. We compared the parameter values to create a confidence interval for each 

(Table 4-3) and results can be seen for the resulting Ca2+ traces that show a tight range of 

dynamics attained (Figure 4-3).  
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Figure 4-3: Multiple iterations of Jurkat model optimization shows tight Ca2+ dynamics.  

17 different parameter sets are combined here with the average value (blue line) +/- 

standard deviation (blue shading). Results appear to be tight for Ca2+ traces with or 

without inhibitors present. 

 

 It can be seen that overall, throughout all parameter sets obtained, the Ca2+ 

dynamics do not vary substantially when compared in Figure 4-3. From this exercise we 

conclude that although many parameter sets can be obtained, with values varying 

between different runs to give the 95% confidence interval (Table 4-3), the overall 

network topology is robust to these alterations and nicely reflects the physiological Ca2+ 

response in Jurkat T cells upon TCR activation as all runs show qualitatively similar 

results when compared to experimental data (Figure 4-3). 

 

Table 4-3: 95% confidence interval for parameter values in Jurkat T cells. 

17 simulations were compiled to compute confidence intervals. 

Parameter Jurkat T cells 

𝜷𝒊* (0.015, 0.071) 

𝜷𝒆𝒓* (0.060, 0.094) 

𝜷𝒎𝒊𝒕 (0.10, 0.30) 

𝝆𝒆𝒓 0.015 
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Table 4-3 continued. 

𝝆𝒎𝒊𝒕 0.08 

𝒌𝑷𝑳𝑪𝒂𝒄𝒕 (0.0033, 0.0043) s-1 

𝒌𝑷𝑳𝑪𝒅𝒆𝒂𝒄𝒕 (0.037, 0.057) s-1 

𝒌𝑰𝑷𝟑𝒑𝒓𝒐𝒅 (0.38, 0.56) M-1 s-1 

𝒌𝑰𝑷𝟑𝒅𝒆𝒈* (0.0094, 0.012) s-1 

𝑽𝑰𝑷𝟑 (1.4, 5.3) s-1 

𝑲𝑰𝑷𝟑 (0.31, 0.43) M 

𝑲𝒂𝒄𝒕 (0.12, 0.16) M 

𝑨 (0.077, 0.10) 

𝑲𝒊𝒏𝒉 1 M 

𝑲𝑰𝑷𝟑𝒊𝒏𝒉* (0.76, 0.99) M 

𝑲𝑬𝑹𝒍𝒆𝒂𝒌* (0.0023, 0.0038) s-1 

𝑽𝒔𝒆𝒓𝒄𝒂* (49.57, 85.43) M s-1 

𝑲𝒔𝒆𝒓𝒄𝒂 (0.32, 0.42) M 

𝑽𝒎𝒊𝒕𝒊𝒏 (315.9, 497.2) M s-1 

𝑲𝒎𝒊𝒕𝒊𝒏 (0.74, 0.92) M 

𝑽𝒎𝒊𝒕𝒐𝒖𝒕* (140.5, 191.7) M s-1 

𝑲𝒎𝒊𝒕𝒐𝒖𝒕* (3.21, 4.92) M  

𝑽𝒄𝒓𝒂𝒄 (1.04, 1.48) M s-1 

𝑲𝒔𝒐𝒄* (284, 448) M  

𝑲𝒔𝒕𝒊𝒎 (201, 230) M 

𝑲𝑷𝑴𝒍𝒆𝒂𝒌 (2.18e-5, 3.42e-5) s-1 

𝑽𝒑𝒎𝒄𝒂* (1.25, 1.99) M s-1 

𝑲𝒑𝒎𝒄𝒂 (0.13, 0.22) M 

 

4.3.2 Young Model Recreates Experimental Data 

Our computational model of TCR-induced Ca2+ signaling in Jurkat T cells was then 

adapted to describe Ca2+ signaling in low passage primary CD8+ T cells.  The model was 
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optimized to fit Ca2+ time courses from low passage primary CD8+ T cells while keeping 

many parameters conserved between both cell types and allowing the starred species in 

Table 4-4 to vary within the original bounds. For the young CD8+ T cell model, 

parameter estimation was performed with a genetic algorithm in MATLAB® R2014b 

(Mathworks, Natick, MA). The initial parameter set was populated from the best 

parameter fit +/- 20% of the Jurkat Ca2+ model. The model was fit to conditions without 

inhibitors and was validated by predicting Ca2+ dynamics in the presence of chemical 

inhibitors.  

Table 4-4: Parameters chosen for plotting and subsequent model fitting or sensitivity 

analysis 

Parameter Jurkat T cells Young CD8+ T cells 

𝜷𝒊* 0.056 0.047 

𝜷𝒆𝒓* 0.049 0.98 

𝜷𝒎𝒊𝒕 0.033 0.033 

𝝆𝒆𝒓 0.015 0.015 

𝝆𝒎𝒊𝒕 0.08 0.08 

 

 

 

 

𝒌𝑷𝑳𝑪𝒂𝒄𝒕 0.0033 s-1 0.0033 s-1 

𝒌𝑷𝑳𝑪𝒅𝒆𝒂𝒄𝒕 0.042 s-1 0.042 s-1 

𝒌𝑰𝑷𝟑𝒑𝒓𝒐𝒅 0.48 M-1 s-1 0.48 M-1 s-1 

𝒌𝑰𝑷𝟑𝒅𝒆𝒈* 0.010 s-1 0.018 s-1 

𝑽𝑰𝑷𝟑 4.0 s-1 4.0 s-1 

𝑲𝑰𝑷𝟑 0.57 M 0.57 M 

𝑲𝒂𝒄𝒕 0.13 M 0.13 M 

𝑨 0.079 0.079 

𝑲𝒊𝒏𝒉 1 M 1 M 

𝑲𝑰𝑷𝟑𝒊𝒏𝒉* 0.82 M 1.5 M 

𝑲𝑬𝑹𝒍𝒆𝒂𝒌* 0.0043 s-1 0.048 s-1 

𝑽𝒔𝒆𝒓𝒄𝒂* 112.75 M s-1 103.88 M s-1 

 



www.manaraa.com

 52 

Table 4-4 continued. 

𝑲𝒔𝒆𝒓𝒄𝒂 0.43 M 0.43 M 

𝑽𝒎𝒊𝒕𝒊𝒏 388.6 M s-1 388.6 M s-1 

𝑲𝒎𝒊𝒕𝒊𝒏 0.81 M 0.81 M 

𝑽𝒎𝒊𝒕𝒐𝒖𝒕* 188.9 M s-1 244.7 M s-1 

𝑲𝒎𝒊𝒕𝒐𝒖𝒕* 4.03 M  4.7 M 

𝑽𝒄𝒓𝒂𝒄 2.4 M s-1 2.4 M s-1 

𝑲𝒔𝒐𝒄* 363.5 M  358.8 M 

𝑲𝒔𝒕𝒊𝒎 178.1 M 178.1 M 

𝑲𝑷𝑴𝒍𝒆𝒂𝒌 1.1e-6 s-1 1.1e-6 s-1 

𝑽𝒑𝒎𝒄𝒂* 2.14 M s-1 2.08 M s-1 

𝑲𝒑𝒎𝒄𝒂 0.11 M 0.11 M 

 

 Upon fitting, we found the primary young CD8+ T cell model was able to predict 

IP3 and Ca2+ dynamics in different cellular compartments, as shown in Figure 4-4. With 

such different time scales of Ca2+ dynamics between the two cell types, it is not 

surprising that the resulting optimized parameter values are different between the models, 

especially the maximal velocities (Table 4-4). 
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Figure 4-4: Model results for young primary CD8+ T cell model compared to 

experimental data.  

Cytosolic Ca2+ dynamics in the absence (a) or presence of inhibitors (b,c) at the same 

concentration as for Jurkat cells. (d-f) Model predictions for other state variables in the 

no inhibitor simulation. 

 

 We similarly ran multiple iterations of the parameter optimization and arrived at 

confidence intervals for the parameters that were allowed to vary between the Jurkat and 

young CD8+ T cell model and from the shaded plot summarizing all runs, it is clear that a 

wide range of parameters give rise to similar Ca2+ dynamics (Table 4-5, Figure 4-5). One 

notable exception is in the dynamics of Ca2+ signaling in the ER, which has a wide range 

and qualitatively does not match intuition. In further inspection, there appeared to be two 

different qualitative responses that the model could give. The first was qualitatively 

similar to what appears in Figure 4-4, where the concentration of CaER drops upon initial 

activation and slowly recovers through time. This matches all literature evidence of T cell 

activation mechanisms and was chosen for performing the sensitivity analysis and 

subsequent fit with the old T cell data. The second qualitative behavior of the model 

showed an initial increase in CaER that seems to level off through time, but ultimately 

reaching a level that was greater than is physiologically relevant (> 500 μM). These were 
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deemed less accurate due to literature evidence of Ca2+ release from the ER during T cell 

activation but were nonetheless included in parameter calculations for the confidence 

intervals (Table 4-5). 

 

Figure 4-5: Primary young CD8+ T cell model results from 15 iterations of optimization. 

The average response (blue line) is compared to +/- one standard deviation in model 

results. 

 

Table 4-5: 95% confidence interval for parameter values in primary young CD8+ T cells. 

15 simulations were compiled to compute confidence intervals. 

Parameter Young CD8+ T cells 

𝜷𝒊* (0.0065, 0.027) 

𝜷𝒆𝒓* (0.36, 0.73) 

𝒌𝑰𝑷𝟑𝒅𝒆𝒈* (0.040, 0.063) s-1 

𝑲𝑰𝑷𝟑𝒊𝒏𝒉* (1.29, 1.47) M 

𝑲𝑬𝑹𝒍𝒆𝒂𝒌* (0.028, 0.041) s-1 

𝑽𝒔𝒆𝒓𝒄𝒂* (145, 200) M s-1 

𝑽𝒎𝒊𝒕𝒐𝒖𝒕* (222, 369) M s-1 

𝑲𝒎𝒊𝒕𝒐𝒖𝒕* (4.25, 6.62) M  

𝑲𝒔𝒐𝒄* (197, 455) M  

𝑽𝒑𝒎𝒄𝒂* (0.088, 0.95) M s-1 
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 Previously collected experimental data suggested mRNA levels of plasma 

membrane channels were upregulated, mainly PMCA and ORAI1 showed significant 

increase with age [194]. To determine if these changes were sufficient to explain 

differences in young vs. old CD8+ T cells, we used the model described above to vary 

Vcrac and Vpmca within the original bounds to compare with the old CD8+ T cell data. 

Varying these two parameters alone did not create substantial changes between the 

models to recapitulate experimental differences in amplitude, time to peak, and decay 

time, as can be seen by the best fit in Figure 4-6. 

 

Figure 4-6: Best fit of Old CD8+ T cell model varying only two parameters, Vcrac and 

Vpmca. 

4.3.3 Sensitivity Analysis of Young Model 

With changes in levels of PMCA and CRAC channels being unable to recreate the old 

CD8+ T cell experimental data, we identified which parameters were most implicated in 

being responsible for our characteristics of interest: time-to-peak and decay time 
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constant. We achieved this through performing sensitivity analysis on the young CD8+ T 

cell model (Figure 4-7).  

 

Figure 4-7. Model sensitivity analysis of Ca2+ trace features implicated in 

immunosenescence.  

(a) Parameter sensitivity to peak time and (b) parameter sensitivity to the decay time 

constant, 1. Parameters were perturbed +/- 20% from their initial value individually and 

results are reported as compared to the original feature value and clustered for easier 

visualization. 
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 For these two features, any non-linear behaviors, such as oscillatory Ca2+ traces 

that may result in certain regions of the parameter space, would alter the calculation but 

results appear to be fairly consistent with very few nonlinear behaviors seen in the 

heatmap. After clustering, higher parameter sensitivity can be seen for either of the 

features, but the parameters involved in altering both are mainly consistent between 

features, i.e. most parameters implicated in one feature are also highly indicative in the 

second feature.  

 Among the initial 24 parameters tested, seven parameters were identified as being 

the most responsible for the observed changes with age, many of which are involved with 

Ca2+ exchange with the ER stores (Figure 4-7). The seven parameters found to have the 

most effect on peak time and the decay constant were 𝐾𝑠𝑒𝑟𝑐𝑎, 𝑉𝑝𝑚𝑐𝑎, 𝑉𝑐𝑟𝑎𝑐, 𝐾𝑠𝑡𝑖𝑚, 𝐾𝐼𝑃3, 

𝐾𝐼𝑃3𝑝𝑟𝑜𝑑, and 𝐾𝐼𝑃3𝑑𝑒𝑔 (Figure 4-7). 

4.3.4 Old Model Recreates Experimental Data 

To ensure these parameters were the drivers involved with the experimentally observed 

old CD8+ T cell phenotype, we allowed these seven parameters to vary from the original 

young CD8+ T cell model using the genetic algorithm approach mentioned above. The 

objective function was varied slightly from previous fits with additional constraints for 

peak time and peak amplitude (Figure 4-8). The new optimized parameter set, shown in 

Figure 4-8, shows differences compared to the young CD8+ T cell model best parameter 

set, with 1% upregulation for 𝐾𝑠𝑒𝑟𝑐𝑎, 35% upregulation for  𝑉𝑝𝑚𝑐𝑎, 59% upregulation 

for 𝑉𝑐𝑟𝑎𝑐, 2% upregulation for 𝐾𝑠𝑡𝑖𝑚, 76% downregulation for 𝐾𝐼𝑃3, 22% upregulation for 

𝐾𝐼𝑃3𝑝𝑟𝑜𝑑, and 434% upregulation in 𝐾𝐼𝑃3𝑑𝑒𝑔. From this point, we were motivated to 

investigate redox metabolic reprogramming during this aging protocol because we 
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typically associate altered protein abundance with differences in maximal velocity, but 

our mRNA experiments did not implicate all of these parameters. Specifically, SERCA, 

IP3 and STIM1 appeared with altered kinetics despite not appearing as significantly 

different in mRNA experiments.  

 

Figure 4-8: Best fit of old CD8+ T cell model with allowing seven parameters to vary 

from the young CD8+ T cell model, as identified through sensitivity analysis.  

 

 In Figure 4-9 and Figure 4-10, we varied the two main parameters associated with 

STIM1, 𝑉𝑐𝑟𝑎𝑐 and 𝐾𝑠𝑡𝑖𝑚, individually to determine the effect on the calcium traces. We 

found that both of these parameters alone altered the peak time and decay of the calcium 

signaling when varied +/- 20% of the optimized young CD8+ T cell model, which 

supports our model predictions that STIM1 may be involved with age related changes in 

T cells. 
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Figure 4-9: Varying Kstim from the “young T cell” model fit to investigate the effects on 

calcium traces.  

Kstim was varied +/- 20% the fit value of 178. 

 

 

Figure 4-10: Varying Vcrac from the young CD8+ T cell model fit to investigate the effects 

on calcium traces.  

Vcrac was varied +/- 20% the fit value of 2.37. 
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4.3.5 Models Capture Dynamic Response of Senescing T Cells 

 For the final step of our modeling pipeline, we investigated the changes in 

identified Ca2+ trace features between the young and old CD8+ T cell models compared to 

the experimental observations (Figure 4-11). As can be seen in Figure 4-11a, the fold 

change between the young and old CD8+ T cell models reflect the experimental data well 

and thus validates this modeling technique.  
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Figure 4-11: Model predictions compared to experimental data of Ca2+ dynamics between 

young and old CD8+ T cells.  

a) Comparison of experimental data to the model predictions for the two identified 

parameters, Peak Time and Decay Constant τ1. Error bars represent mean and 95% 

confidence interval represented in the above error bar b) Young CD8+ T cell cytosolic 

Ca2+ model trace (blue) compared to experimental data (pink). c) Old CD8+ T cell 

cytosolic Ca2+ model trace (blue) compared to experimental data (pink). 

 

4.4 Discussion 

 Previous experimental evidence suggests primary CD8+ T cells, aged in culture, 

exhibit differences in Ca2+ kinetics between young and old cells. Specifically, the Peak 

Time and Decay Constant τ1 were found to be significantly different between ages. 



www.manaraa.com

 62 

Further, there were two Ca2+ channels shown to be slightly upregulated with age. If Ca2+ 

channels and pumps lose activity through time, this upregulation potentially acts as a 

compensatory effect to keep T cell signaling kinetics similar to younger cells. To explore 

this intricate web of a multifactorial signaling network to determine if these differences in 

gene expression could account for the changes in Peak Time and Decay Constant τ1, we 

utilized computational modeling and built upon previous models to successfully recreate 

the kinetic Ca2+ dynamics upon TCR ligation.  

 Since parameter sets were combined from different cell types and conditions, we 

first started with a Jurkat model of immortal T cells and fit the model to experimental 

data that was either previously collected or found in literature. This closely related model 

was then modified to fit the young CD8+ T cell experimental data by allowing a subset of 

parameters to vary. The modeling work shows good concordance between experimental 

traces and model predictions, and a robust qualitative behavior for many different 

parameter sets suggesting we haven’t drastically overfit the model (Figure 4-3). Because 

the model fit experimental data well, we were confident moving forward to compare 

differences in the kinetic parameters between models of different ages, investigating the 

differences as potential explanations of the underlying biological mechanisms behind the 

altered function. 

 Our first attempt was to see if the mRNA data differences were enough to affect 

the observed changes in kinetics (Figure 4-9 and Figure 4-10). When modeling found this 

was not enough as the models did not fit the old CD8+ T cell traces well, we moved on to 

see which parameters drive the observed experimental changes and allowed those to vary 

to fit an old model of CD8+ T cell activation (Figure 4-7). Upon running this 
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optimization, we found a much more appropriate fit of the model to the experimental data 

and felt comfortable the seven parameters that we allowed to vary were responsible for 

the purported change in Ca2+ kinetics. We completed many replicates of the optimization 

to arrive at a range of parameter values and calculated the characteristics of interest, Peak 

Time and τ1.  

 When comparing the young and old CD8+ T cell models, it was found that the 

fold change in the characteristics of interest, Peak Time and τ1, aligned well with the 

experimental findings, thus validating the model. The activity of STIM1 was pulled out 

of the sensitivity analysis as a potential driver for these changes. As there was no 

significant difference in mRNA level of this protein found, it must be concluded that this 

suggests the activity of STIM1 is altered through in vitro aging of T cells. It was later 

confirmed that STIM1 is differentially oxidized between young and old CD8+ T cells, 

thus demonstrating the utility of a mechanistic model in extracting mechanistic 

differences and highlighting potential targets. From this exercise, we have created a 

model capable of recapitulating multiple T cell states, thus informing us of potential 

redox modified components of the system which were previously difficult to ascertain.  

 While these models are able to capture the observed differences between young 

and old CD8+ T cells, it may be possible to further capture responsible entities in this 

signaling cascade by introducing more complexity, specifically that involved with redox 

modification of these proteins of interest. The model is also written as a deterministic 

ODE model, but there is a great deal of literature on all the stochastic events which play a 

role in T cell activation, and it would be interesting to incorporate some of this 

stochasticity into the model. With a stochastic component of the model, it may be 
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possible to see how these noisy events can emerge as functional alterations in T cell Ca2+ 

kinetics. 

 The model shown here represents an average T cell in the body. Future 

explorations could include single-cell analysis approaches to determine if there are 

different subsets of the population that account for different Ca2+ kinetics. This model 

would be amenable to this type of study by altering the parameters for each subset; 

potentially identifying which parameters should be experimentally investigated for 

potentially driving subsets of the population. These parameters may be of interest in 

diseases that show a different portion of cells in these subpopulations compared to 

healthy individuals. This example highlights the ability of modeling to answer many 

complex questions and using this to drive many future experiments. Computational 

modeling provides a unique framework for hypothesis driven experimentation by 

allowing us to intelligently probe complex signaling networks in an unprecedented 

fashion. These experiments may be difficult or impossible to perform with current 

technology in the lab, thus opening the door to a more complete understanding of T cell 

signaling in response to TCR engagement, hopefully identifying key regulatory networks 

that can be targeted for cell therapies in the future. 
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CHAPTER 5  MICROFLUIDIC TECHNIQUES FOR 

OSCILLATORY STIMULATION AND SINGLE-CELL 

FREQUENCY RESPONSE ANALYSIS 

5.1 Introduction 

Parts of this chapter were adapted from He, L*, Kniss, A*, et al., An automated 

programmable platform enabling multiplex dynamic stimuli delivery and cellular 

response monitoring for high-throughput suspension single-cell signaling studies. Lab on 

a Chip, 2015. 15(6): p. 1497-1507. [215] 

5.1.1 Frequency Based Stimulation 

T cell lymphocytes are a critical component of the adaptive immune response and 

become activated upon presentation with a foreign peptide through the T cell receptor 

[64]. Activation induces rapid signaling through multiple kinase cascades to alter gene 

expression and ultimately leads to functional changes, such as proliferation and cytokine 

release, that enable T cells to ward off pathogens and store immunological memory for 

future diseases [23, 150]. The time dependent, dynamic features of these signaling 

pathways is crucial for full functionality of T cells [74, 216]. Improper intracellular 

signaling of T cells during activation has been implicated in numerous diseases, thus 

providing an important cascade to study [15-19]. There is a great body of literature on 

elucidating components of the signal transduction cascades, yet many complex 

interactions remain unknown and are difficult to study with conventional experimental 
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methods, which typically measure responses to a bolus stimulus concentration step 

change. 

 To better understand the structure and dominant feedback controls in complex 

signaling networks, system identification methods, originally developed in control 

engineering, have recently been applied to biological systems [115-117, 120, 217]. With 

dynamic stimulation, it is possible to analyze the gain and delay of the output signal and 

analyze signal transduction pathways in an unprecedented fashion [218]. This analysis 

technique requires experimental systems amenable to fast, fluid switching mechanisms to 

interrogate cellular systems on a short timescale, capturing signaling events that occur on 

the order of seconds to minutes [66, 219]. Further, measurements done in bulk can mask 

these oscillatory or dynamic responses of a heterogeneous population by averaging 

different signaling phenotypes [100, 219]. To utilize this control theory approach, two 

devices have been designed and implemented in our research group to enable repeatable 

delivery of dynamic stimuli while enabling single-cell resolution analysis of T cells 

through time [215, 220]. 

5.1.2 Experimental Techniques For Oscillatory Manipulation 

Microfluidics provide new opportunities for studying cellular signaling dynamics [102, 

107, 221-226]. Multiple techniques have been utilized for trapping suspension cells, such 

as dielectrophoresis (DEP) [227, 228], optical tweezers [229], valves [230-232], 

microarray [233, 234], or hydrodynamic focusing [223, 235]. Yet the quick alteration of 

cellular microenvironment is difficult with these platforms. Several microfluidic designs 

exist in this functional domain, one such device is capable of a spatially varying but 

temporally static chemical gradient to study cellular processes such as chemotaxis [113]. 
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Other devices enable oscillatory stimulation [236, 237], specifically for the nematode 

organism [238, 239], yeast cells [117], and bacteria [236]. This research utilizes two 

microfluidic devices that were invented to not only capture individual non-adherent cells, 

but also deliver robust and operationally simple dynamic chemical stimulation. The first 

device is a one layer device that uses on-chip valves to vary the microenvironment. The 

second device is a two layer device that uses a perforated PDMS membrane combined 

with a high-density cell trap for uniform stimulation of the entire population of cells. 

5.2 Materials and Methods 

5.2.1 Device Design: Device for Multiplex Cell Stimulation 

Previous microfluidic devices are unable to provide dynamic stimulation with high 

frequency due to external fluid switching technology that may introduce undesirable 

pressure surges and create large fluid switching times, enabling diffusion of the square 

wave dynamic stimulation [114]. To create a microfluidic device capable of delivering 

robust dynamic stimuli, a previously developed cell trap [102] was modified with 

pneumatic valves (Figure 5-1). While different valve systems exist for microfluidic 

devices, such as screw valves and solenoid valves [240], pneumatic valves were chosen 

because it was possible to include them on a single-layer device with only the addition of 

an external pressure source box. The single-layer PDMS device consists of 2 

compartments: the pressurized liquid valves capable of fluid switching and cell trapping 

chambers with flow channels to hydrodynamically attract a single-cell to each trap site 

when it is empty [102]. The flow rate is determined by an adjustable, external pressure 

source that can be tuned to reduce shear stress on the cells. 
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Figure 5-1: One layer device overview.  

(A) Micrograph of microfluidic device: pneumatic valves (red) and fluid flow module 

(blue). (B) Enlarged bright field image of pneumatic valves when actuated. (C) False 

color image of Jurkat cells (green) trapped in cell chamber (red dotted line). (D & E) 

Fluorescent image of alternate switching between fluorescein solution (bright) and PBS 

(dark). 

 

 This device consists of a cell trap layer (Figure 5-1A, blue) where cells are loaded 

into individual traps for the experiment duration and the pneumatic valves (Figure 5-1A, 

red), which close and open to allow either stimulus or buffer to be delivered to the cells 

(Figure 5-1B). There are four observation chambers in the middle of the device as well as 

two chambers for a positive control and negative control on either side, which receive 

stimulus or buffer only, respectively. This provides suitable experimental controls within 

a single device. 

5.2.2 Methods: Device for Multiplex Cell Stimulation 

5.2.2.1 Device Setup 

All solutions and cell suspensions were prepared and contained in 15 mL tubes (Falcon 

tube, BD biosciences, San Jose, CA). Tubes were connected to the device through 

polystyrene tubing (PE4, Scientific Commodities). Pneumatic valves were initially filled 
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with water at 30 psi through the valve inlet; during the experiment, valves were 

alternatively actuated at 50 psi. To prime the device and create a liquid environment, 

filtered 2% bovine serum albumin (BSA, Fisher Scientific) in 1× phosphate buffered 

saline (PBS, Boston BioProducts) was pressurized simultaneously from all ports into the 

device using a pressure of approximately 5 psi. This priming step removed any air 

bubbles and prevented undesired adhesion of cells to channel walls. To load cells after 

priming the device, the cell inlet was replaced with tubing connecting to the cell 

suspension, while all other ports stayed connected to priming solution.  

The cell suspension was driven into the device by applying 1 psi at the cell inlet 

and no pressure at the outlet. Pressures were adjusted at stimulus and buffer inlets to keep 

priming solution flowing into device, which ensured unidirectional loading of cells to 

trapping chambers. After cells were loaded, the stimulus solution and cell media replaced 

priming solutions at the stimulus and buffer inlets, respectively. After closing the cell 

inlet by pinching the tubing, stimulus and buffer were driven to their respective inlets by 

a constant pressure between 1 and 5 psi to stimulate cells with a dynamic signal. An air 

compressor regulated through solenoid valves in a customized pressure control box 

provided the pressure source. A custom MATLAB® (MathWorks) GUI controlled these 

solenoid valves that modulate the actuation or shutoff of pressure. 

5.2.2.2 Cell Culturing and Treatment 

The Jurkat E6-1 human acute T cell lymphoma cell line (American Type Culture 

Collection) was cultured in RPMI 1640 Medium without Phenol Red and with L-

glutamine (Sigma-Aldrich) at 37 °C in a humidified 5% CO2 incubator. The media was 

supplemented with 10 mM HEPES buffer, 1 mM sodium pyruvate, 50 units mL−1 
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penicillin–streptomycin (Cellgro), 1× MEM nonessential amino acids, and 10% fetal 

bovine serum (Sigma-Aldrich). 

Cytoplasmic Ca2+ concentration was monitored using Fluo-3, AM, cell permeant 

(Life Technologies). Cells were incubated for 40 minutes with 5 μM Fluo-3 and 0.05% 

w/v Pluronic F127 at 37°C before being washed 3 times with PBS and resuspended in 

white RPMI without Phenol Red. Cells were loaded into the device at 0.5 × 106 cells 

mL−1 for approximately 20 minutes before they received stimulation. 

5.2.2.3 Time Lapse Microscopy and Cell Identification 

Once cells were loaded in the device, images were acquired with a Nikon Eclipse Ti 

inverted fluorescent microscope using a FITC filter cube (Omega XF22). Time-lapse 

microscopy was performed using Elements Software (Nikon) with frame rates of 0.1 Hz 

to avoid photo bleaching of the Ca2+ dye, Fluo-3. 

Images were analyzed in an automated fashion using custom MATLAB® 

(MathWorks) scripts. Analyzed cells were manually chosen based on presence in the first 

and final frame using the overlay command in MATLAB® (MathWorks). The mean 

fluorescence intensity was calculated for each region of interest (ROI) with the removal 

of background fluorescence at each time point. 

5.2.2.4 Characterizing Device Performance 

To assess the performance of our device in various experimental conditions, we 

empirically characterized the chemical stimulus profiles at various flow rates, temporal 

resolutions and concentration levels. We recorded the fluorescent intensity by acquiring 

images (Infinity 3, Leica) at a frame rate of 5 Hz. Image analysis was done using custom 
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MATLAB® (MathWorks) scripts. With these scripts, we manually identified a ROI for 

each row and calculated the mean intensity in that ROI for all frames. 

To characterize the temporal resolution of stimulus profiles, we alternated 

fluorescein solution (0.05 mg mL−1) and PBS at 4 frequencies: 5, 10, 100, and 500 mHz, 

while pressurizing both solutions at 3 psi. The alternation was automated by a customized 

pressure control box and controlled through a customized MATLAB® GUI 

communicating to the box. 

5.2.3 Device Design: Modularized Device for Uniform Cell Stimulation 

A previously characterized microfluidic device was used for the trapping and subsequent 

fluorescent imaging of suspension Jurkat immune cells [220]. The two-layer design of 

this device enables fast, robust switching of fluids while cells are maintained in a low 

shear stress environment for the duration of the experiment. As can be seen in Figure 

5-2a-d, this published device consists of cell trap layer, capable of trapping and holding 

cells for subsequent analysis, connected to a large stimulus delivery layer, capable of 

enabling fast fluid switching, via small pores [220]. Together, we are able to image 

individual T cells through time with precise, uniform control of the cellular environment. 

Taking a frequency response analysis approach, we probed Jurkat lymphocyte cells with 

an oscillatory input of H2O2 (Figure 5-2e). To complement this enabling experimental 

pipeline, analysis techniques were developed to enable an unprecedented view of calcium 

signaling in T cells. 
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Figure 5-2: Microfluidic device description and experimental setup.  

(a) 3D representation of the two-layer device plasma bonded to a glass slide. (b) 

Depiction of the two layers of the device: red is the stimulus layer, which allows for 

orthogonal bulk fluid flow and blue is the cell trap layer, which traps individual cells for 

time-lapse fluorescent microscopy. (c) Example of the cell loading phase of the 

experiment. Cells are loaded into the traps (shown in blue) via hydrodynamic focusing 

and a porous membrane connects this layer to the stimulus layer. (d) Example of the 

stimulus application phase of the experiment. Stimulus (shown in red) is flowed through 

the top chamber and permeates the bottom through the porous membrane while cells 

remain trapped. (e) Cells trapped in the device receive an oscillatory H2O2 input signal 

and we measure the resulting dynamic cytoplasmic calcium signal. 

 

5.2.4 Methods: Modularized Device for Uniform Cell Stimulation 

5.2.4.1 Device Fabrication and Cell Loading 

Devices were molded with PDMS (Sylgard 184, Dow Corning) and two master wafers as 

previously described [220]. Both layers were molded with a 10:1 mixture of PDMS pre-
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polymer to cross linker.  The first layer of PDMS was spun on the master with cell traps 

to a level of ~10-12 μm so the pore structures that connect the two layers were above the 

PDMS and thus created holes for fluid to flow through. This layer was baked at 70°C for 

approximately 15 minutes, until partially cured. The second layer was poured on the 

stimulus chamber wafer to a height of ~2-3 mm and also partially cured at 70°C for 20 

minutes. Once both layers were partially cured, the stimulus chamber layer was cut, 

aligned with the cell trap layer, and thermally bonded for an additional 40 minutes at 

70°C. Once cured, holes were punched with a 19-gauge needle and the two-layer PDMS 

device was plasma bonded onto a clean glass slide.   

5.2.4.2 Single-cell Identification and Analysis 

As experimental design becomes increasingly complex and capable of collecting large 

quantities of single-cell data, analysis is becoming dependent on automated techniques to 

identify cells and collect metrics of interest over time. Many techniques available are 

unable to discern anomalous or unrelated features that are similar to those of interest. To 

combat this, our research first utilizes a manual approach for identifying cells of interest, 

and then builds on a combination of Relative Difference Filtering and Clustering 

(RDFC), which has shown to be useful for numerous systems with a predictable pattern 

of signal. Collected images were analyzed using custom MATLAB® scripts 

(MathWorks). First, cells were automatically identified in one of the initial images using 

a previously described relative difference filtering and clustering (RDFC) approach (Zhao 

et al., In Prep). Once the mask was created, it was applied to the entire image sequence 

and the average fluorescent intensity of the cells was calculated and the local background 

was subtracted, based on a small area to the top left of each identified cell. Cell traces 
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were discarded if the average fluorescent intensity was negative for any value in the 

measured time points. This indicated the background subtraction was above the mean 

fluorescent intensity, suggesting the identified cell may have squeezed through the trap 

and was no longer present. For the cells that remained in the trap through the duration of 

the experiment, the average intensity was normalized via a linear transformation such that 

each cell’s signal varies from 0 to 1. This step helped to reduce variation in initial loading 

of cell dye. 

 Once the normalized fluorescent intensity was calculated for each cell, it was then 

analyzed via a modified spectral analysis GUI, as originally developed by Uhlén in 2004 

[241]. This GUI takes the single-cell signals and first fits a second order polynomial to 

each individually and subtracts this from the signal to remove artifacts from the 

experimental conditions [241], such as photo-bleaching of the cytoplasmic calcium 

indicator, Fluo-3. The Fourier transform is then taken of the signal to identify dominant 

frequencies in the signals. For each cell, the power spectral density is normalized to a 

total area of 1 and the area under the curve for each frequency is calculated to determine 

these dominant frequencies. It is then compiled into weighted histograms [242] with each 

identified frequency being multiplied by the relative power of the frequency and 

combined with the frequency information from all other cells in the population and 

plotted in a weighted histogram. This histogram is then normalized such that the total 

area under the curve is equal to 1 with bins of width 0.5 mHz. 
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5.3 Results 

5.3.1 Device for Multiplex Cell Stimulation 

5.3.1.1 Device is Capable of Delivering Robust and Tunable Stimulation 

To perform frequency response analysis, the goal of the device is to interrogate cells with 

oscillatory signals, which span a broad portion of the frequency space. To ensure this 

device was capable of achieving this, we visualized the alternation of PBS and a 

fluorescent signal, PBS with fluorescein, at varying frequencies. We quantified the 

fluorescent intensity through time for various rows of the device and compiled it in 

Figure 5-3. It can be seen in the resulting spatial-temporal profiles that dispersion affects 

the fluorescent profiles to different extents. For instance, lower frequencies (below 10 

mHz) shows the oscillatory profile for all rows within the device, although those rows 

towards the bottom of the device have a more sinusoidal profile when compared to the 

step profile in the first rows. For higher frequencies, the residence time of 8 s in this 

experiment is much higher than that of the alternating period. At these frequencies, the 

desired waveforms are only resolved for the first few rows and beyond that the 

microenvironment becomes homogenized into an average, constant stimulus level.  
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Figure 5-3: Varying frequencies in one layer device. 

The temporal resolution is revealed by stimulus profiles oscillating in wide temporal 

ranges: (A) 500 mHz (2 s), (B) 100 mHz (10 s), (C) 10 mHz (100 s) and (D) 5 mHz (200 

s). Profiles were generated by alternatively delivering fluorescein solution and PBS at a 

driving pressure of 3 psi. Heat maps show spatial (Y axis) and temporal (X axis) average 

ROI fluorescent intensity (color bar) in single observation chamber. 

 

 This dispersion and mixing through the device limits the attainable temporal 

resolution, and also introduces variability within a given experiment between cells of 

different rows.  
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5.3.1.2 Preliminary Study of Calcium Signaling in Response to Dynamic Stimulation of 

H2O2 

Ca2+ is actively sequestered in the endoplasmic reticulum (ER) until T cell activation 

triggers its release [2, 64]. Upon stimulation, cytoplasmic Ca2+ concentration has been 

shown to oscillate through time, which is thought to be the result of stochastic 

distribution of receptor proteins within the membrane[72, 73, 243]. This dynamic calcium 

signaling ultimately leads to nucleation of NFAT and production of cytokine interleukin-

2 (IL-2) [150]. Studies suggest a role of ROS in T cell activation, especially involved in 

calcium flux that follows TCR recognition [20, 37, 45]. 

We used our device to examine the response of Jurkat cells to dynamic 

stimulation by alternating 100 μM H2O2 solution with RPMI media without Phenol Red 

at 2 psi. The shear stress experienced by these cells is estimated from flow velocity data 

to be around 1 dyne cm−2, much lower than the high shear stress blood cells are subjected 

to normally in the bloodstream [244]. Previous studies also indicated no recognizable 

effect on T cell signaling with the shear stresses estimated in the cell trapping chamber 

[102, 245]. Thus we assume signaling is unimpaired with the observed continuous flow 

conditions. Cytoplasmic Ca2+ concentration was monitored using fluorescence 

microscopy of Fluo-3 while cells experienced stimulation at a frequency of either 5 mHz 

or 50 mHz. Under 10x magnification (e.g. for monitoring of cytosolic calcium dye such 

as Fluo-3), only a few rows within an observation chamber can be monitored at the same 

time. These cells are assumed to be under approximately the same stimulation profiles, 

because for each of the two frequencies the concentration profile has been experimentally 

shown to be similar in adjacent rows (Figure 5-3). Individual cell traces were analyzed 
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over time, and a heat map of fluorescent intensity from 50 cells is shown in Figure 5-4. 

The cell number is not associated with location information. 

 

Figure 5-4: Cytoplasmic calcium signalling synchronizes with low frequency oscillating 

stimulus.  

Heat map of 50 cells responding to (A) 50 mHz (20 s) and (B) 5 mHz (200 s) stimulation 

of 100 μM H2O2. Single-cell traces are graphed from selected cells responding to (C) 50 

mHz and (D) 5 mHz stimulation of 100 μM H2O2. The population is visibly 

synchronizing to the stimulus at 5 mHz, while response heterogeneity exists among 

populations under each stimulation condition. 
 

The heat maps clearly show heterogeneity within the population of monitored 

cells under each stimulation condition and select individual cell traces are shown Figure 

5-4. The 5 mHz signal entrained some cells within the population to exhibit cytoplasmic 

Ca2+ concentration oscillations at approximately the same frequency. In contrast, the cells 

experiencing 50 mHz stimulation do not appear to exhibit oscillations of cytoplasmic 
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Ca2+ concentration at the same frequency as the driving frequency. These results suggest 

the Ca2+ signaling pathway of Jurkat T cells acts as a low-pass filter, not responding to 

stimulation at high frequencies while faithfully reflecting low frequency signals. The cut-

off frequency of this particular pathway was shown to be between 50 mHz and 5 mHz. 

Given these results, we demonstrated the value of this device to generate 

biologically relevant signals in order to interrogate cellular signaling pathways and probe 

its signal transduction properties. With a full spectrum of frequencies sampled, this 

device is capable of garnering the experimental data necessary for frequency response 

analysis and provides a more systematic approach to analyzing the underlying feedback 

control in a complex biological network. 

5.3.2 Modularized Device for Uniform Cell Stimulation 

5.3.2.1 Uniform Stimulation for All Rows with Robust Delivery 

With the two-layer nature of this device, stimulation is delivered from the top layer at a 

faster rate while keeping the cells in a low shear stress environment. Due to the top down 

delivery, all rows receive uniform stimulation and there are no delays or dispersion of 

chemical stimulation that may contribute to experimental artifacts within a device. As can 

be seen in Figure 5-5 for the sampled frequencies, there is uniform, repeatable 

stimulation for all rows sampled, which span from top to bottom of the device, 

controlling for stimulation profile during experiments.  
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Figure 5-5: Characterization of different frequencies in two layer device. 

The characterization of the two layer device revealed robust and uniform stimulation in 

all rows sampled in the device. (A) 1 min period, corresponding to a frequency of 16.7 

mHz, (B) 2 minute period, corresponding to a frequency of 8.3 mHz, and (C) 6 minute 

period, corresponding to a frequency of 2.8 mHz. Results were obtained from switching 

PBS and fluorescein solution at 1 psi. Heat maps represent the average fluorescent 

intensity (au) in a single row of the device. 

 

5.3.2.2 Cells are Automatically Identified with RDFC  

For each experiment, images were compiled into a video, which was subsequently 

analysed for mean fluorescent intensity of a single-cell through time. To identify 

cells located in the trap, one of the images from the video went through a 

combination of relative difference filtering and clustering (RDFC) (Zhao et al., In 

Prep). Briefly, this algorithm uses a standard 3x3 media filter to reduce sparse 

noise and assigns the value zero to regions with intensity lower than an identified 

threshold (Zhao et al., In Prep). Following this, uneven illumination is reduced by 

using a relative difference filter and a threshold is then applied to identify pixels 

above the local background (Zhao et al., In Prep). The resulting pixels of interest 

are further filtered based on size, shape, and position in an ordered array with 

respect to other cells using k-means clustering, as the cells are loading in a 

predictable manner within the trap (Zhao et al., In Prep). 
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Figure 5-6: Example analyzed frame for identifying single T cells in two-layer device. 

(A) Cells can be seen loaded in traps in a deterministic way, but some have been trapped 

in pores that connect the two layers (red boxes). (B) RDFC result where the majority of 

boxed cells from A have been removed, leaving only cells properly trapped for 

subsequent analysis. 

 

5.3.2.3 Single-cell Traces Show Heterogeneity Within the Population 

Once cells have been identified in the cell trap array, a mask is created and then applied 

to all images in a given experimental video. The average intensity is recorded with a local 

background identified and subtracted for each specific cell. This helps to reduce the 

variation in the event of uneven illumination during the fluorescent recording. The 

average intensity is min-max normalized and each single-cell trace is put through a 

modified version of a previously published GUI for analyzing calcium oscillations [241]. 

The resulting single-cell calcium traces were recorded and heterogeneity can be seen in 

responses (Figure 5-7b,c). Traces were analyzed for dominant frequencies, as defined by 

exhibiting an area under the curve greater than a designated threshold in the PSD (Figure 

5-7f,g). Interestingly, for given input frequencies, the average trace can be seen entrained 

to the driving frequency, exhibiting a single dominant frequency at the corresponding 

driving frequency (Figure 5-7d,h). When viewing individual cells, some will be entrained 

similarly to the population average (Figure 5-7b,f) while others exhibit alternative 
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frequency responses (Figure 5-7c,g), illustrating the necessity to use single-cell analysis 

in this approach.  

 

Figure 5-7: Data analysis pipeline of example 2.78 mHz experiment.  

(a) The input signal was characterized using fluorescein media and oscillates at the 

desired frequency of 2.78 mHz. (b) and (c) Two single-cell calcium traces illustrate the 

dynamic information we receive from the experimental system: (b) Cell 6 and (c) Cell 78. 

(d) The single-cell traces from a given experiment are combined to yield a population 

average. (e-h) 207 calcium signals are then analyzed [241] by FFT and resulting 

dominant frequencies are identified for frequencies above a chosen threshold (see 

Methods). The power spectral densities (PSDs) are plotted for (e) the input signal, (f) Cell 

6, (g) Cell 78, (h) the average signal of all 207 individual cells. 
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 During this analysis, we also extract the gain and phase for each individual cell 

and combine them for further, population-based analyses. This analysis pipeline allows 

us to view individual calcium traces as signals in the frequency domain, ultimately 

providing additional information about the response of cytoplasmic calcium to the 

experimental perturbation that cannot be captured with dose-response, bulk 

measurements. 

5.4 Discussion 

In this chapter, I introduce two enabling technologies from the Lu lab, both of which are 

capable of delivering a range of profiles that were previously unobtainable for cells not 

adhered to a surface. This ability was captured in two elegant solutions. The first device 

kept fabrication and operational simplicity by combining pneumatic valves with the 

previously developed cell trapping module for suspension cells [215]. I developed 

MATLAB® scripts to characterize the delivery of signals within the device, finding the 

phenomena of dispersion and mixing as the signal moves through the device. Due to the 

one-layer nature, not all cells within the device receive exactly the same stimulation: the 

top rows receive a square wave whereas lower rows receive a more sinusoidal shape 

while controlling for the average level of stimulant throughout the experiment. Further, 

the device had positive and negative experimental controls built into the design, 

simplifying the number of experiments necessary and controlling for variation between 

devices. The variability of stimulation throughout the device may prove useful in certain 

biological systems that can be perturbed dynamically for known responses. It would 

reduce the number of experiments necessary while providing otherwise unobtainable 

stimulation profiles.  
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 The second device, which was previously developed by our group, incorporated a 

second layer on top of the cell trapping module separated only by a perforated PDMS 

membrane, enabling quick delivery of stimulation from fast, bulk flow down to the cell 

trapping layer while maintaining a low shear stress environment [220]. We chose to 

switch to this design for future chapters because of the uniform nature of the stimulus 

delivery. Not only was the device capable of delivering finely tuned oscillatory input 

signals, but it can be easily seen there is very little variation between rows, thus reducing 

the amount of experimental artifacts for any given set of cells.  

 Development of both devices was driven by an experimental need to perturb 

suspension cells in a dynamic fashion. We confirmed this need was met by characterizing 

the devices and subsequently investigating the role of ROS in Jurkat human T cells' 

calcium signaling network. In this chapter I have demonstrated the utility of the one layer 

device for perturbing Jurkat T cells. To accomplish this, we stimulated cells with two 

dynamic patterns of H2O2 signals. The acquired results showed the heterogeneity among 

cell population and allowed us to roughly estimate the cut-off frequency of the Ca2+ 

signaling network in Jurkat cells. Our results would not be observable in population-

average based, bulk experiments and emphasized the unique value of our platform to 

enable the study of cellular signaling network properties.  

 These experimental results were obtained through the development of a 

complementary data analysis pipeline capable of accumulating single-cell data and 

analyzing it through time. This analysis technique reduced the time it takes to compile 

such data with conventional technologies and demonstrates its utility when examining 

single-cell responses compared to the population average of the cells, showing a wide 
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range of responses that were previously uncharacterized. This method of analysis, while 

providing new insight into the range of responses, also makes it difficult to make 

conclusions while controlling for population heterogeneity versus experimental variation. 

To help reduce the latter, we switched to the two-layer device and characterized less 

variability between the rows. This device was chosen for all subsequent signaling studies 

due to the uniform nature of stimulation.    

 Although we demonstrated the concept of these devices with T cells, as the signal 

generation modules are independent from the cell-trapping module, the cell-trapping 

modules can be replaced to adapt to most cell sizes and types. Similarly, the analysis 

techniques shown here can be used for different cell types and fluorescent reporters, thus 

providing a complete package for single-cell analysis in response to dynamic stimulation. 

We envision this platform to be applied to broad single-cell analyses, such as in 

pharmacodynamics, immunology, stem cells and cancer research. 
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CHAPTER 6  T CELL RESPONSE TO OSCILLATORY 

STIMULATION 

6.1 Introduction 

As part of the adaptive immune response, T cell lymphocytes function to recognize and 

respond to pathogens present in the body. With a multitude of functions, T cells have 

been implicated in numerous diseased conditions, such as autoimmune disorders [17].  T 

cell activation induces rapid proliferation and a change in intracellular signaling cascades 

to alter gene expression and ultimately cytokine release [20]. More specifically, when an 

antigen-presenting cell (APC) engages the T cell receptor (TCR), a cascade of activated 

kinases phosphorylates phospholipase-C  (PLC-) [31], which cleaves PIP2 to generate 

IP3. IP3 subsequently binds IP3 receptors (IP3R) and calcium is released from intracellular 

stores into the cytoplasm [32]. The subsequent calcium signaling involves oscillations, 

thought to be the result of the stochastic distribution of IP3R within the membrane and the 

result of calcium influx from external sources [72, 73]. This signaling profile illustrates 

the ability for calcium to produce complex signals as opposed to molecules that produce 

binary state switches [65]. Different frequencies have been shown with varying levels of 

stimulation[246] and have an effect on the activation of downstream transcription factors, 

such as NFAT and NF-κB [22, 32, 247]. 

 The increased signaling capacity during T cell activation is also associated with 

an increase in glucose metabolism and subsequent burst of reactive oxygen species 

(ROS) from NADPH oxidases [37] and the mitochondria [20]. ROS, such as hydrogen 

peroxide (H2O2) and superoxide, are produced within the cell and act as secondary 
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messengers in numerous cellular processes. Alteration of ROS production and regulation 

has been implicated in diseases such as cancer [6] and autoimmune disorders [248]. 

However, it is often difficult to measure ROS within the cell and many techniques only 

allow for population averages through time. There is known cross talk between calcium 

and H2O2 during T cell activation; ROS is able to activate calcium release channels [79-

81] and increase the channel activity of two ER membrane channels, IP3R and RyR [85, 

87, 249]. The connections between these signaling molecules are difficult to analyze due 

to the fast, dynamic kinetics and subcellular localization. We seek to better understand 

these connections in the context of frequency encoding, looking to answer the question of 

whether dynamic stimulation with H2O2 is able to affect Ca2+ signaling in the frequency 

domain within T cell lymphocytes. Furthermore, we seek to determine which frequencies 

of input oscillatory conditions of H2O2 elicit the best Ca2+ response. 

 Control-based computational methods have been developed for discerning 

complex, interconnected networks of signaling molecules that are difficult to interrogate 

with bulk measurements [218]. Ultimately, these techniques can help identify and model 

only dominant interactions within the network by characterizing the behavior of a system 

from its responses to sinusoidal inputs. This is accomplished by applying oscillatory 

stimuli to cells and measuring the resultant gain and phase shift of the output signal. This 

behavior can be modeled with a transfer function, reducing the parameters necessary to 

describe a biological system. We also attempt to compare this response to a large, 

mechanistic model of the interaction between ROS and Ca2+ molecules during T cell 

activation. We present here an approach to interrogating calcium dynamics with dynamic 

H2O2 input to elucidate characteristics of the signaling network. 
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 T cells develop in the thymus and reside as suspension cells in the blood. As 

suspension cells, they have been historically difficult to analyze dynamically at a single-

cell level because they often float out of the focal place during fluorescent microscopy 

imaging. There are techniques, such as flow cytometry, that enable single-cell analysis, 

but these are end-point assays that cannot monitor a single-cell through time.  

 Advances in microfluidics have enabled more advantageous methods for T cells, 

such that hundreds of single T cells can be loaded into a single device and monitored 

dynamically with fluorescent molecules [102, 250-253], providing insight into the 

underlying signaling networks with commonly available fluorescent probes and markers. 

Recent microfluidic devices have also enabled delivery of robust, time-varying chemical 

signals, in contrast to conventional experimental techniques which measure the response 

of cells to a single perturbation of step increase or bolus of stimulus [215, 220]. The 

enhanced experimental capability can be combined with frequency response analysis, 

originally developed in control engineering, such that the underlying complex signaling 

networks can be discerned more easily. As calcium signaling is an almost immediate 

response to T cell stimulation, occurring within seconds of stimulation, it is an 

appropriate molecular [254] candidate for this analysis technique. Examples of this 

approach include biological applications in the osmotic stress response [117] and the 

galactose response pathway [120] in S. cerevisiae.  

 In this study, we utilize a microfluidic device and frequency response analysis to 

investigate features of intracellular calcium dynamics in response to H2O2 stimulation in 

Jurkat cells, an immortal T cell lymphocyte line. We probed the dynamics between H2O2 

and Ca2+ by varying the extracellular H2O2 environment of the cell and recording the 



www.manaraa.com

 89 

intracellular cytoplasmic Ca2+ response to varying frequencies. Cells in any given 

experiment received a single frequency of stimulation and cells were combined across 

conditions for an experimental Bode Plot, which provides insight into the filter dynamics 

of cytoplasmic Ca2+ signaling in response to H2O2. We report that Ca2+ responds to H2O2 

with second order filtering characteristics exhibiting a natural frequency of 2.78 mHz, 

corresponding to known downstream effector functions. 

6.2 Materials and Methods 

6.2.1 Cell Culture and Treatments 

Experiments were performed on the Jurkat E6-1 human acute T cell lymphoma cell line 

(American Type Culture Collection) grown in conditions as described before [215]. 

Briefly, the cells were cultured in RPMI 1640 without Phenol Red (Lonza) and with L-

glutamine (Sigma-Aldrich), supplemented with 10 mM HEPES buffer (Corning), 1 mM 

sodium pyruvate (Cellgro), 50 units mL-1 penicillin-streptomycin (Cellgro), 1x MEM 

nonessential amino acids (Cellgro), and 10% fetal bovine serum (Sigma-Aldrich). 

To visualize cytoplasmic calcium in response to varying experimental conditions, the 

cells were loaded with 5 μM Fluo-3 AM, cell permeant (Life Technologies) and 0.05% 

w/v Pluronic F-127 (Sigma-Aldrich) for 30 minutes at 37°C. Cells were subsequently 

washed with PBS and resuspended in complete RPMI media without Phenol Red, as 

described above. Cells were loaded into the device at a density of 1 x 106 cells/mL. 

6.2.2 Device Operation 

Devices were primed with 2% BSA in PBS to prevent unintentional cell-adhesion and 

non-specific binding. Once all bubbles were removed, the top, stimulus chamber, was 
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connected to two pressurized reservoirs of fluid at 1 psi. Specifically, these reservoirs 

contained either complete media or complete media with the addition of 10, 25, 50, or 

100 μM H2O2. Cells were loaded into the device via gravity driven flow as previously 

described [220]. Once cells were loaded, the different solutions were delivered at 

alternating frequencies, as defined with user input to custom MATLAB® (MathWorks) 

scripts, which controlled off-chip pinch solenoid valves.   

6.2.3 ROS and Calcium Model: System of Differential Equations 

The model description is modified, with permission from [194] to include updates to 

equations and optimization framework. 

There are many known interactions between Ca2+ signaling and ROS metabolism during 

T cell activation. To better elucidate some of these key interactions we built upon the 

model presented in Chapter 5 and added interactions, such as proteins regulating ROS 

and Ca2+ metabolism, into the different compartments of the model. As can be seen in the 

model depiction in Figure 6-1, there are two major modules of the model: ROS 

production and Ca2+ fluxes between organelles. In this model, we assume all species 

concentrations are spatially uniform within any given compartment. Many Ca2+ and ROS 

modulation interactions described here have not been mathematically derived in previous 

work, and we have assumed these biological processes can be described using Michaelis-

Menten and Hill-type functions. 
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Figure 6-1: Schematic of Species and Connections Within the ROS/Ca2+ Model. 

Connections between the Ca2+ Module (Black) and ROS Module (Red) are depicted here 

with dashed arrows representing inhibition and solid arrows representing activation. 

Modifications are described in the text for equations subjected to regulation. 

 

6.2.4 Model Equations: ROS Module 

The first module of the model comprises ROS production and clearance mechanisms 

within T cell lymphocytes. ROS are lumped together; there is no distinction between 

different species present within the cell. Previous work in our group has encompassed a 

more detailed model of cytosolic H2O2 and its clearance from Jurkat cells, including 

mechanisms involving catalase, glutathione peroxidase, peroxiredoxin, glutaredoxin, 

thioredoxin and glutathione [255]. In this approach, many of these interactions are either 
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simplified or removed such that only major production and clearance mechanisms in each 

compartment are in place. 

 The fundamental equations, describing ROS concentration in the cytosol, ER, and 

extracellular spaces are described below for ROScyt, ROSER, and ROSext, respectively: 

 

𝑑𝑅𝑂𝑆𝑒𝑥𝑡
𝑑𝑡

=  −𝐽𝑝𝑒𝑟𝑚 Equation 6-1 

 

𝑑𝑅𝑂𝑆𝑐𝑦𝑡

𝑑𝑡
= 𝐽𝑝𝑒𝑟𝑚 + 𝐽𝑛𝑜𝑥 + 𝐽𝑑𝑢𝑜𝑥 + 𝐽𝑚𝑖𝑡𝑝𝑟𝑜𝑑 − 𝐽𝐸𝑅𝑝𝑒𝑟𝑚 − 𝐽𝑠𝑐𝑎𝑣 Equation 6-2 

 

𝑑𝑅𝑂𝑆𝐸𝑅
𝑑𝑡

=
1

𝜌𝐸𝑅
(𝐽𝐸𝑅𝑝𝑒𝑟𝑚 + 𝐽𝐸𝑅𝑝𝑟𝑜𝑑 − 𝐽𝐸𝑅𝑠𝑐𝑎𝑣) Equation 6-3 

 

where 𝜌𝐸𝑅is the ratio of the volume of the ER compared to the cytosolic volume. 

6.2.4.1 ROS Flux Across the Plasma Membrane 

The rate of ROS transport across the plasma membrane from extracellular space to the 

cytosol is described based on [255]: 

𝐽𝑝𝑒𝑟𝑚 = 𝐾𝑝𝑒𝑟𝑚 (𝑅𝑂𝑆𝑒𝑥𝑡 − 𝑅𝑂𝑆𝑐𝑦𝑡) Equation 6-4 

 

where Kperm is the coefficient to describe the permeability of ROS through the plasma 

membrane and is adjusted to reflect the surface area of the cell, as was done in [255]. 
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6.2.4.2 Production of ROS 

ROS is produced as a result of many reactions within the cell. NADPH oxidases are 

commonly activated to produce either superoxide or H2O2 during T cell signaling and 

two exist in T cells: Nox2 (Jnox), and Duox1 (Jduox), which is also sensitive to Ca2+ [37, 

256]. 

 Nox2 has been extensively studied due to its importance in phagocytic oxidative 

burst during T cell activation, which subsequently controls many interwoven aspects of 

the signaling cascade. Nox2 activation occurs as a result of a series of complex protein-

protein interactions and proper phosphorylation is required for full activity [52, 257]. We 

further simplified previous models of NOX activation in epithelial cells [258] to be 

dependent solely upon IP3 for activation since the same upstream effector for IP3 is also 

responsible for activating protein kinase C (PKC), which phosphorylates downstream 

targets through RAS [259, 260], ultimately activating Nox2: 

 

𝐽𝑛𝑜𝑥 = 𝑉𝑛𝑜𝑥 (
𝐼𝑃3

𝐼𝑃3 + 𝐾𝑛𝑜𝑥
) Equation 6-5 

 

In this equation, Vnox is the maximal rate of ROS production via Nox2 and Knox is the 

concentration of IP3 at which the reaction rate is half of Vnox. 

 The other NAPDH oxidase studied here, duox1, is dependent on Ca2+ and has 

been shown to be important during the initial, rapid production of H2O2 upon TCR 

engagement. ROS production via Duox1 is described as linear with respect to IP3 and a 

2nd order Hill function with respect to cytosolic Ca2+ levels based on its activation via 

Ca2+ binding to EF hand motifs and phosphorylation through PKC/PKA-dependent routes 

[261]: 
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𝐽𝑑𝑢𝑜𝑥 = 𝑉𝑑𝑢𝑜𝑥𝐼𝑃3(
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝐷𝑢𝑜𝑥

2 ) Equation 6-6 

 

where Vduox is the maximal rate of ROS production by Duox1 and Kduox is the 

concentration of Cacyt at which the reaction rate is half of Vduox. 

 Another notable source of ROS is from the electron transport chain in the 

mitochondria. It has been shown previously that ROS production is increased, 

specifically from the mitochondria, but the connection to Ca2+ signaling is still being 

discerned. There are currently conflicting reports suggesting under some inhibitory 

conditions, Ca2+ induced ROS production in the mitochondria, but under normal 

conditions it may be reduced upon Ca2+ signaling [90, 262]. Due to this discrepancy, 

mitochondrial production was described with a constant rate with no dependence on Ca2+: 

 

𝐽𝑚𝑖𝑡𝑝𝑟𝑜𝑑 = 𝑉𝑚𝑖𝑡𝑝𝑟o𝑑 Equation 6-7 

 

6.2.4.3 Cytoplasmic Scavaging of ROS 

Previously generated models [255] were combined into a single 1st order mass action 

kinetic equation to describe the redox reactions and other protein thiol modifications 

responsible for metabolizing H2O2, with kscav representing the scavenging rate constant: 

 

𝐽𝑠𝑐𝑎𝑣 = 𝑘𝑠𝑐𝑎𝑣𝑅𝑂𝑆𝑐𝑦𝑡  Equation 6-8 
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6.2.4.4 Permeability of ER Membrane 

It has been shown that ER ROS levels increase in response to bolus additions of H2O2, 

suggesting the ER membrane is somewhat permeable to this molecule [263]. We model 

this as being dependent on the difference in concentration through time: 

 

𝐽𝐸𝑅𝑝𝑒𝑟𝑚 = 𝐾𝐸𝑅𝑝𝑒𝑟𝑚(𝑅𝑂𝑆𝑐𝑦𝑡 − 𝑅𝑂𝑆𝑐𝑦𝑡𝑖𝑛𝑖𝑡) Equation 6-9 

 

with kERperm being the permeability of the ER membrane to ROS. 

6.2.4.5 ER Production of ROS 

The ER is the site of protein folding and requires a highly oxidative environment to 

ensure the proper post translational modifications can occur. To create this environment, 

there are many sources of ROS present in the ER, including oxygenases and oxidases 

[264]. Ero1 is also a significant source of ROS in the ER and helps to set the highly 

oxidized state while reducing fluctuations via a feedback mechanism [265-267]. We have 

simplified this production rate below: 

 

𝐽𝐸𝑅𝑝𝑟𝑜𝑑 = 𝑉𝑒𝑟𝑜1 (
𝐾𝑒𝑟𝑜1
𝑛𝑝𝑟𝑜𝑑

𝑅𝑂𝑆𝐸𝑅
𝑝10 + 𝐾𝑒𝑟𝑜1

𝑛𝑝𝑟𝑜𝑑
) Equation 6-10 

  

 

where Vero1 maximum production rate of ROS by Ero1, Kero1 is concentration of ROSER 

at which the reaction rate is half of Vero1, and the Hill coefficient is represented with nprod. 
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6.2.4.6 ER Scavanging of ROS 

The ER is also able to reduce ROS, by means such as the thiol/disulfide system that 

includes glutathione, newly synthesized proteins, pyridine nucleotides, and glucose-6-

phosphate (G6P) [259]. It was shown in [263] that ER levels decrease after Ca2+ 

mobilization, without ERO1 activity, suggesting CaER levels affect ROS degradation 

[261]. This aligns with other work that suggests low intraluminal Ca2+ can lead to an 

altered redox status and ultimately misfolded proteins. Simplifying these interactions, we 

arrive at the following equation: 

 

𝐽𝐸𝑅𝑠𝑐𝑎𝑣 = 𝑘𝐸𝑅𝑠𝑐𝑎𝑣𝑅𝑂𝑆𝐸𝑅 (
𝐾𝐸𝑅𝑠𝑐𝑎𝑣
𝑛𝑠𝑐𝑎𝑣

𝐶𝑎𝐸𝑅
𝑛𝑠𝑐𝑎𝑣 + 𝐾𝐸𝑅𝑠𝑐𝑎𝑣

𝑛𝑠𝑐𝑎𝑣 ) Equation 6-11 

 

where kERscav is the maximum rate of ROS scavenging in the ER and KERscav is the 

concentration of CaER at which the reaction rate is half of kERscav and nscav is the 

associated Hill coefficient. 

6.2.4.7 Model Equations: Ca2+ Module 

The second module contains interactions involved with Ca2+ signaling and represents the 

same mathematical description as in Chapter 5 for the main fluxes between intracellular 

compartments, with the addition of ROS modulatory parameters, described below. 

Reflecting those in Chapter 5, the main equations of Ca2+ kinetics are given here: 

𝑑𝐶𝑎𝑐𝑦𝑡

𝑑𝑡
=  𝛽𝑖((𝐽𝐼𝑃3 − 𝐽𝑠𝑒𝑟𝑐𝑎 + 𝐽𝐸𝑅𝑙𝑒𝑎𝑘) + (−𝐽𝑚𝑖𝑡𝑖𝑛 + 𝐽𝑚𝑖𝑡𝑜𝑢𝑡)

+ (𝐽𝑐𝑟𝑎𝑐 − 𝐽𝑃𝑀𝐶𝐴 + 𝐽𝑃𝑀𝑙𝑒𝑎𝑘)) 
Equation 6-12 
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𝑑𝐶𝑎𝐸𝑅
𝑑𝑡

=
𝛽𝐸𝑅
𝜌𝐸𝑅

(−𝐽𝐼𝑃3 + 𝐽𝑠𝑒𝑟𝑐𝑎 − 𝐽𝐸𝑅𝑙𝑒𝑎𝑘)) Equation 6-13 

 

𝑑𝐶𝑎𝑚𝑖𝑡
𝑑𝑡

=
𝛽𝑚𝑖𝑡
𝜌𝑚𝑖𝑡

(𝐽𝑚𝑖𝑡𝑖𝑛 − 𝐽𝑚𝑖𝑡𝑜𝑢𝑡) Equation 6-14 

 

Cacyt and 𝛽𝑖 represent the concentration of Ca2+ and the ratio of free to total Ca2+ in the 

cytosol, respectively. Camit and 𝛽𝑚𝑖𝑡 represent the concentration of Ca2+ and the ratio of 

free to total Ca2+ in the mitochondria. Similarly, CaER and 𝛽𝐸𝑅 represent the concentration 

of Ca2+ and the ratio of free to total Ca2+ in the ER [188, 197]. We use 𝜌𝑚𝑖𝑡 and 𝜌𝑒𝑟 to 

correct for the difference in volume between the ER and mitochondria compared to the 

cytosol. There are many proteins involved with Ca2+ buffering that have the potential to 

be redox sensitive, but oxidation of various proteins results either increased or decreased 

affinity for Ca2+, and thus these mixed effects have been left out of the equations. 

6.2.4.8 Ca2+ Flux into the ER 

Ca2+ flux from the cytosol to the ER is modulated through IP3R channels, which have the 

ability to be redox regulated at several cysteine residues. For example, IP3R1 has 60 

cysteine residues, with 70% shown to be in the reduced state with diverse regulatory 

significance and accessibility [268]. IP3R activation can also be sensitized via oxidation 

of thiol groups by thimesoral or GSSG such that lower levels of IP3 are able to activate 

channel activity [85, 269, 270]. Duox1 is also co-expressed with IP3R in T cells, 

suggesting Duox1 activity may provide a positive feedback necessary for IP3R activity 

[271]. Finally, some studies found a potential link between ER redox state and the 
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functional activity of IP3R, even without specific purported cysteine residues that would 

give rise to these specific modifications [272-274]. From these interactions, we describe 

the ROS modulation as a redox dependent modification of the IP3 affinity constant: 

 

𝐽𝐼𝑃3 = 𝑉𝐼𝑃3𝐶𝑎𝐸𝑅PIP3 Equation 6-15 

 

where VIP3 is the maximal flux of Ca2+ through IP3R into the ER, and PIP3 is the 

probability that IP3R is open. The open probability can be described as a function of 

Cacyt, IP3 concentration, and h, which is the fraction of IP3R that does not have Ca2+ 

bound to the inhibitory site: 

 

𝑃𝐼𝑃3 = ((
𝐼𝑃3

𝐼𝑃3 + KIP3ros
)(

𝐶𝑎𝑐𝑦𝑡

𝐶𝑎𝑐𝑦𝑡 + 𝐾𝑎𝑐𝑡
)ℎ)

3

 Equation 6-16 

 

where Kact is the midpoint of Ca2+-dependent channel activation and KIP3ros represents the 

ROS dependent dissociation of IP3 from the IP3 binding site: 

 

𝐾𝐼𝑃3𝑟𝑜𝑠 = 𝐾𝐼𝑃3 (
𝑘𝐼𝑃3𝑟𝑜𝑠
𝑛𝑟𝑜𝑠𝐼𝑃3

𝑅𝑂𝑆𝑐𝑦𝑡 + 𝑘𝐼𝑃3𝑟𝑜𝑠
𝑛𝑟𝑜𝑠𝐼𝑃3) Equation 6-17 

 

 

with KIP3 representing the concentration of IP3 at which the half maximal observed 

reaction rate is achieved, kIP3ros is the concentration of ROSER that leads to half maximal 

altered IP3 binding affinity and nrosIP3 is the Hill coefficient for this process.  
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We also define the fraction of inactivated IP3R, (1-h), to be a function of Cacyt and the 

affinity of Ca2+ for the inhibitory site, Q: 

 

𝑑ℎ

𝑑𝑡
= 𝐴 ((1 − ℎ)(𝑄 + 𝐶𝑎𝑐𝑦𝑡) − 𝐶𝑎𝑐𝑦𝑡) Equation 6-18 

 

𝑄 =  
𝐾𝑖𝑛ℎ(𝐼𝑃3 + KIP3ros)

𝐼𝑃3 + 𝐾𝐼𝑃3𝑖𝑛ℎ
 Equation 6-19 

 

where A is a factor to control the relative time scales, Kinh is the affinity of Ca2+ for the 

inhibitory site, and KIP3inh is the altered IP3 affinity to its binding site when Ca2+ is bound 

to the inhibitory site. 

6.2.4.9 Ca2+ Flux into the ER via SERCA 

Ca2+ is actively sequestered into the ER via SERCA pumps, which have between 22 and 

28 cysteine residues that are redox sensitive to inhibit pump activity during high ROScyt  

levels [92, 271, 275]. For simplicity, we modeled a general modification of combined 

SERCA isoforms dependent on ROScyt: 

 

𝐽𝑠𝑒𝑟𝑐𝑎 = 𝑉𝑠𝑒𝑟𝑐𝑎 (
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡 + 𝐾𝑠𝑒𝑟𝑐𝑎2
)(

𝑘𝑠𝑒𝑟𝑐𝑎𝑟𝑜𝑠
𝑛𝑠𝑒𝑟𝑐𝑎𝑟𝑜𝑠

𝑅𝑂𝑆𝑐𝑦𝑡
𝑛𝑠𝑒𝑟𝑐𝑎𝑟𝑜𝑠 + 𝑘𝑠𝑒𝑟𝑐𝑎𝑟𝑜𝑠

𝑛𝑠𝑒𝑟𝑐𝑎𝑟𝑜𝑠) Equation 6-20 

 

where Vserca is the maximal velocity of Ca2+ through SERCA pumps, Kserca is the 

concentration of Cacyt at which the reaction rate is half of Vserca, ksercaros is the 

concentration of ROScyt concentration for half maximal pump inhibition and nsercaros is 

the associated Hill coefficient.  
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6.2.4.10 ER Ca2+ Leak 

Due to the increase in nonselective membrane permeability upon high levels of ROSER, 

we modified JERleak: 

 

𝐽𝐸𝑅𝑙𝑒𝑎𝑘 = 𝐾𝐸𝑅𝑙𝑒𝑎𝑘𝐶𝑎𝐸𝑅 (1 +
𝑅𝑂𝑆𝐸𝑅 − 𝑅𝑂𝑆𝐸𝑅𝑖𝑛𝑖𝑡

𝑅𝑂𝑆𝐸𝑅𝑖𝑛𝑖𝑡
) Equation 6-21 

 

where KERleak is the constant leak of Ca2+ through the ER membrane and ROSERinit is the 

initial level of ROS in the ER. 

6.2.4.11 Mitochondrial Control of Ca2+ 

The mitochondrial control of Ca2+ remains unaltered from Chapter 5 because there are no 

confirmed reports of redox modification of the channels and pumps involved with Ca2+ 

transport across the mitochondrial membrane: 

 

𝐽𝑚𝑖𝑡𝑖𝑛 = 𝑉𝑚𝑖𝑡𝑖𝑛 (
𝐶𝑎𝑐𝑦𝑡

4

𝐶𝑎𝑐𝑦𝑡
4 + 𝐾𝑚𝑖𝑡𝑖𝑛

4 ) Equation 6-22 

 

𝐽𝑚𝑖𝑡𝑜𝑢𝑡 = 𝑉𝑚𝑖𝑡𝑜𝑢𝑡𝐶𝑎𝑚𝑖𝑡 (
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝑚𝑖𝑡𝑜𝑢𝑡

2 ) Equation 6-23 

 

6.2.4.12 Ca2+ Transport Through the Plasma Membrane 

SOCE is dependent on ER Ca2+ depletion to activate STIM1. STIM1 dimerizes and 

associates with ORAI1 at the plasma membrane to activate CRAC channels. It is not 
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clear from literature what role redox regulation plays in SOCE, and conflicting reports 

led us to keep the flux identical to that described in Chapter 5.  

 

𝐽𝑐𝑟𝑎𝑐  =  𝑉𝑐𝑟𝑎𝑐 (
𝐾𝑠𝑡𝑖𝑚
3

𝐶𝑎𝐸𝑅
3  +  𝐾𝑠𝑡𝑖𝑚

3 ) (
𝐶𝑎𝑒𝑥𝑡

𝐶𝑎𝑒𝑥𝑡 + 𝐾𝑠𝑜𝑐
) Equation 6-24 

 

 

Similarly, the leak of Ca2+ ions through the plasma membrane is not thought to be redox 

regulated and hence was kept the same as in Chapter 5: 

 

𝐽𝑃𝑀𝑙𝑒𝑎𝑘 = 𝐾𝑃𝑀𝑙𝑒𝑎𝑘𝐶𝑎𝑒𝑥𝑡 Equation 6-25 

 

 

Similar to SERCA pumps, PMCA pumps are thought to be inhibited by oxidation in the 

presence of high levels of ROS [276, 277]. As such, Ca2+ flux through the plasma 

membrane into extracellular space has been modified: 

 

𝐽𝑃𝑀𝐶𝐴 = 𝑉𝑝𝑚𝑐𝑎 (
𝐶𝑎𝑐𝑦𝑡

2

𝐶𝑎𝑐𝑦𝑡
2 + 𝐾𝑝𝑚𝑐𝑎2

)(
𝑘𝑝𝑚𝑐𝑎𝑟𝑜𝑠
𝑛𝑝𝑚𝑐𝑎𝑟𝑜𝑠

𝑅𝑂𝑆𝑐𝑦𝑡
𝑛𝑝𝑚𝑐𝑎𝑟𝑜𝑠 + 𝑘𝑝𝑚𝑐𝑎𝑟𝑜𝑠

𝑛𝑝𝑚𝑐𝑎𝑟𝑜𝑠) Equation 6-26 

 

where Vpmca is the maximum rate of efflux of Ca2+ via PMCA pumps, Kpmca is the 

concentration of Cacyt at which the reaction rate is half of Vpmca, kpmcaros is the 

concentration of ROScyt necessary for half maximal pump inhibition and npmcaros is the 

associated Hill coefficient.  
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6.2.5 ROS and Calcium Model: Parameter Optimization 

Parameter estimation was achieved via a sum of squared error function, taking into 

account the difference between collected experimental data and the model prediction for 

different parameter sets. This was achieved by using the genetic algorithm (ga) in the 

MATLAB® Global Optimization Toolbox. For estimating modeling predictions against 

different experimental conditions, the objective function was estimated below as in 

Chapter 5: 

 

𝑆 = ∑∑∑(
𝑥𝑝𝑟𝑒𝑑(𝑐, 𝑛, 𝑡) − 𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)

𝑥𝑒𝑥𝑝(𝑐, 𝑛, 𝑡)
)

2𝐶

𝑐=1

𝑁

𝑛=1

𝑡𝑠𝑖𝑚

𝑡=1

 Equation 6-27 

 

We kept the parameters from Module 2 consistent with the Jurkat Model results from 

Chapter 5 where possible, and varied Module 1 parameters while fitting to data available 

in the literature. The model was simultaneously fit to three different datasets found in 

literature on the ROSER concentration changes through time [263]. The first dataset was 

captured in response to DTT and we represented this ROS scavenger with an 8-fold 

increase in the scavenging rate of the cytosol and ER. The second dataset was collected in 

the presence of thapsigargin and we represented this with an 85% reduction in Vserca. The 

third data set was recorded in response to histamine treatment, and because this time 

course was reminiscent of Ca2+ kinetics following TCR ligation, we increased the IP3 

input function for the first 5 minutes of treatment to accommodate the experimental 

perturbation. Parameters were simultaneously allowed to vary with the initial conditions 

for each species. Many parameters identified in Chapter 5 were kept constant. 
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Table 6-1: Optimized Initial Conditions for ROS/Ca2+ Model. 

Initial conditions were allowed to vary in physiological ranges according to literature to 

best fit the experimental data. 

Parameter Optimized 

Initial 

Condition 

Bounds 

𝑹𝑶𝑺𝒆𝒙𝒕 0.012 µM [0.0005, 0.05] µM 

𝑹𝑶𝑺𝑬𝑹 79.2 µM [60, 100] µM 

𝑹𝑶𝑺𝒄𝒚𝒕 0.012 µM [0.0005 0.05] µM 

𝑪𝒂𝒄𝒚𝒕 0.0376 µM [0.01, 0.1] µM 

𝑪𝒂𝑬𝑹 338 µM [250 550] µM 

𝑪𝒂𝒎𝒊𝒕 0.108 µM [0.05, 2] µM 

𝒉 0.97 [0.5, 0.99] 

 

 

Table 6-2: Optimized Parameter Values for ROS/Ca2+ Model. 

Many parameters were set constant to the Jurkat model values from Chapter 5. Some 

values were modified or introduced based on ROS interactions within the network of 

equations. 

Parameter Optimized 

Parameter Value 

Bounds Source/Explanation 

𝜷𝒊 0.056 0.056 Chapter 5 

𝜷𝒆𝒓 0.049 0.049 Chapter 5 

𝜷𝒎𝒊𝒕 0.033 0.033 Chapter 5 

𝝆𝒆𝒓 0.015 0.015 [213] 

𝝆𝒎𝒊𝒕 0.08 0.08 Chapter 5 

𝑽𝑰𝑷𝟑 4.0 s-1 4.0 s-1 Chapter 5 

𝑲𝒂𝒄𝒕 0.13 µM 0.13 µM Chapter 5 

𝑨 0.079 0.079 Chapter 5 

𝑲𝒊𝒏𝒉 1 µM 1 µM Chapter 5 

𝑲𝑰𝑷𝟑𝒊𝒏𝒉 0.82 µM 0.82 µM Chapter 5 

𝑲𝑬𝑹𝒍𝒆𝒂𝒌 0.0043 s-1 0.0043 s-1 Chapter 5 

𝑲𝒔𝒆𝒓𝒄𝒂 0.43 µM 0.43 µM Chapter 5 

𝑽𝒎𝒊𝒕𝒊𝒏 388.6 µM s-1 388.6 µM s-1 Chapter 5 

𝑲𝒎𝒊𝒕𝒊𝒏 0.81 µM 0.81 µM Chapter 5 

𝑽𝒎𝒊𝒕𝒐𝒖𝒕 188.9 µM s-1 188.9 µM s-1 Chapter 5 
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Table 6-2 continued. 

𝑲𝒎𝒊𝒕𝒐𝒖𝒕 4.03 µM  4.03 µM  Chapter 5 

𝑽𝒄𝒓𝒂𝒄 2.4 µM s-1 2.4 µM s-1 Chapter 5 

𝑲𝒔𝒐𝒄 363.5 µM  363.5 µM  Chapter 5 

𝑲𝒔𝒕𝒊𝒎 178.1 µM 178.1 µM Chapter 5 

𝑲𝑷𝑴𝒍𝒆𝒂𝒌 1.1e-6 s-1 1.1e-6 s-1 Chapter 5 

𝑲𝒑𝒎𝒄𝒂 0.11 µM 0.11 µM Chapter 5 

𝑲𝒑𝒆𝒓𝒎 0.096 s-1 [1e-2 1e-1] s-1 Adapted from [278], 

according to [194] 

𝑽𝒏𝒐𝒙 1.03e-5 µM s-1 [1e-7 1e-4] µM s-1 [194] 

𝑲𝒏𝒐𝒙 4.00 µM [1 8] µM [194] 

𝑽𝒅𝒖𝒐𝒙 6.00e-5 µM s-1 [1e-7 1e-4] µM s-1 [194] 

𝑲𝒅𝒖𝒐𝒙 0.052 µM [0.05 1] µM  [194] 

𝑲𝑬𝑹𝒑𝒆𝒓𝒎 0.098 µM [1e-4 0.1] µM  [194] 

𝑽𝒆𝒓𝒐𝟏 0.0021 µM s-1 [1e-4 1e-2] µM s-1 Adapted from [279] 

according to [194] 

𝑲𝒆𝒓𝒐𝟏 120 µM [85 120] µM [194] 

𝒏𝒑𝒓𝒐𝒅 6 [1 6] [194] 

𝒌𝑬𝑹𝒔𝒄𝒂𝒗 5.74e-5 s-1 [4e-5 7e-5] [194] 

𝑲𝑬𝑹𝒔𝒄𝒂𝒗 306 µM [150 350] µM [194] 

𝒏𝒔𝒄𝒂𝒗 3 [1 6] [194] 

𝑲𝑰𝑷𝟑 1.77 µM [0.1 5] µM Modulated from Chapter 

5 

𝑽𝒔𝒆𝒓𝒄𝒂 300 µM s-1 [85.8 300] µM s-1 Modulated from Chapter 

5 

𝑽𝒑𝒎𝒄𝒂 2.22 µM s-1 [1.5 10] µM s-1 Modulated from Chapter 

5 

𝑽𝑴𝒊𝒕𝑷𝒓𝒐𝒅 1.2e-6 µM s-1 1.2e-6 µM s-1 [194] 

𝒌𝒔𝒄𝒂𝒗 1.2e-3 s-1 1.2e-3 Adapted from [278] 

according to [194] 

𝒌𝑰𝑷𝟑𝒓𝒐𝒔 0.0442 µM 0.0442 µM Adapted from [280] 

according to [194] 𝒏𝒓𝒐𝒔𝑰𝑷𝟑 0.462 0.462 

𝒌𝒔𝒆𝒓𝒄𝒂𝒓𝒐𝒔 1.151  µM 1.151 µM Adapted from [92], 

according to [194] 𝒏𝒔𝒆𝒓𝒄𝒂𝒓𝒐𝒔 0.38 0.38 

𝒌𝒑𝒎𝒄𝒂𝒓𝒐𝒔 0.258 µM 0.258 µM Adapted from [277], 

according to [194] 𝒏𝒑𝒎𝒄𝒂𝒓𝒐𝒔 1.147 1.147 

6.2.6 Fitting Transfer Function Model 

Parameters to the 2nd order system function were fit to the median of the single-cell data 

at each frequency by using the same approach as for the ROS Ca2+ model. These 

parameters include K, the system gain, 𝜁, the damping coefficient, and 𝜔𝑛, the systems 
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natural frequency in rad/s. The parameters are allowed to vary between given bounds 

while evaluating the genetic algorithm (ga) in the MATLAB® Optimization ToolboxTM. 

 

𝐻(𝑠) = 𝐾 ∗
1

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛2
 

Equation 6-28 

 

Table 6-3: Optimized Parameter Values for Transfer Function Fit. 

Parameter 

Optimized Parameter Values 

Bounds 
Population Top 25% 

Bottom 

25% 

K 7.09e-7 7.80e-6 1.53e-7 [1e-8, 1e-3] 

ζ 0.0220 0.104 0.00240 [1e-5, 1] 

𝝎𝒏 0.0177 rad/s 0.0168 rad/s 0.0190 rad/s 
[0.015, 0.019] 

rad/s 

Error 3.7640 2.5980 3.4388 

Poles 
-0.0004 

+/- 0.0177i 

-0.0017 

+/- 0.0167i 

-0.000045 

+/- 0.0190i 

Stable? Yes Yes Yes 

 

6.2.7 Frequency Response Analysis 

Frequency response analysis does not require previous knowledge of a system, but rather 

treats the system as a black box and visualizes only the output response to the known 

sinusoidal input signal. To do this, the input and output signals must be decomposed into 

their frequency components. More specifically, any signal can be represented as a sum of 

sine waves using the Fourier transform. Mathematically, we derive the Fourier coefficient 

𝑅̂(𝜔) of an output signal R(t), at angular frequency, 𝜔, with the following equation: 

 

𝑅̂(𝜔) =
2

𝑛𝑇
∫ 𝑒−𝑖𝜔𝑡𝑅(𝑡) 𝑑𝑡
𝑛𝑇

0

 Equation 6-29 
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where n is number of sampled periods. The resulting Fourier coefficient is a complex 

number whose amplitude and phase can be calculated for each frequency 𝜔, by taking the 

norm and angle of the Fourier coefficient. While many systems utilize a noisy input 

signal composed of a wide range of sinusoidal inputs to calculate the resulting gain and 

phase for each frequency sampled in the output signal, it is difficult to apply this system 

to our complex signaling network as it will be difficult to ascertain if experimental 

signals are solely the result of underlying sinusoidal inputs presented to the cell or if they 

are a result of experimental noise. As such, we decided to sample the system with a 

sinusoidal input composed of a single frequency. The resulting gain and phase are 

calculated for each frequency and compiled for multiple sampled frequencies into a Bode 

Plot.  

 This Bode Plot can be investigated using a transfer function to mathematically 

describe the system’s behavior. Transfer functions are represented in the Laplace Domain 

as: 

 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
= 𝐾

∏ 𝑠 + 𝑧𝑚𝑚

∏ 𝑠 + 𝑝𝑛𝑛
 Equation 6-30 

 

Where H(s) is the quotient of the Laplace transform of the output signal y(t) and the 

Laplace transform of the input signal u(t). This can also be represented as the product of 

the zeros, zm, and poles, pn, of the system, where m is the number of zeros and n is the 

number of poles with m ≤ n. K is the system gain. The frequency response, H(s) can be 

calculated for given frequencies, 𝜔.   
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 Due to the complex nature of our system and the many non-linearities present in 

the equations, we chose to instead probe the system with a given input to reverse engineer 

the transfer function estimation. The in silico frequency response was created by driving 

the model with an oscillatory H2O2ext input and calculating the gain and phase response of 

the output signal of interest, Cacyt. The gain and phase was computed for each frequency 

sampled using the fast Fourier transform (FFT) in MATLAB® (Mathworks). 

6.3 Results 

6.3.1 Single-cell Analysis Reveals Response to Oscillatory Stimulation 

Once single-cell calcium traces were analyzed, they were compiled to provide insight to 

the response of cells to frequencies of interest. For cells receiving a frequency of 2.78 

mHz, corresponding to a period of 6 minutes, we observed a wide range of dynamic 

responses and resulting dominant frequencies to a given stimulation, thus highlighting the 

emphasis to look at a single-cell response as opposed to the population average of these 

experiments (Figure 6-2a,d). This experimental condition was compared to two controls 

for mechanical switching of fluid flow: (1) media control where the cellular 

microenvironment switched at the same frequency but both solutions contained standard 

RPMI media and (2) H2O2 control where the two solutions were both 25 μM H2O2 

supplemented RPMI media. We observed a clear entrainment of many cells to the 

oscillatory hydrogen peroxide stimulation; this was more pronounced than in the control 

conditions (Figure 6-2). It is evident from these single-cell traces that cells become 

entrained to specific driving frequencies, in particular the oscillating H2O2 condition as 

compared to the two controls (Figure 6-2d-f). 
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Figure 6-2: Single-cell analysis reveals observable entrainment to oscillatory H2O2 

treatment when compared to controls.  

Cells were stimulated with three different oscillatory conditions, all of which were 

performed at 2.78 mHz frequency. (a,d) For the treatment condition, the cellular 

environment alternated between 25 µM H2O2 supplemented RPMI media and RPMI 

media. (a) The resulting histogram of dominant frequencies shows a peak at the driving 

frequency (green arrow) and (d) the heatmap of cytoplasmic calcium concentration 

through time for cells shows the same entrainment characteristics. (b,e) For the media 

control, the cellular environment alternated at the same frequency, but both fluids 

contained only RPMI media. (b) The histogram of dominant frequencies shows a reduced 

peak as compared to the treatment condition and (e) the heatmap of cellular traces 

similarly shows less entrainment to the driving frequency. (c,f) The H2O2 control was 

also driven at 2.78 mHz frequency but both fluids contained 25 µM H2O2 supplemented 

RPMI media. (c) The histogram of dominant frequencies and (f) heatmap of cellular 

traces also show less entrainment to the driving frequency. For (a-c), the frequency 

domain is reduced to 10 mHz for easier visualization. 

 

 We also visualized the dominant frequencies present in cell signals when driven 

with a frequency of 2.78 mHz, and found a peak in dominant frequencies of the treated 

cells corresponding to the driving frequency. Both the media and H2O2 controls showed a 
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reduced peak in dominant frequency at the entrainment value (Figure 6-2a-c), indicating 

the experimental application of oscillatory H2O2 drives this Ca2+ response. This 

population-based visualization shows that although the population is heterogeneous in 

responses, there is an appreciable shift to correspond with the driving frequency of H2O2 

stimulation in at least a subset of the population. 

6.3.2 Input Amplitude Alters Cellular Entrainment for a Given Frequency 

Experiments were repeated for different concentrations of H2O2 (10, 25, 50, and 100 μM) 

and we observed from the dominant frequency histograms that the entrainment is 

dependent on input amplitude (Figure 6-3a-d). These experiments were all driven at the 

same frequency, as shown before, of 2.78 mHz and only the 25 μM condition exhibits a 

large peak in output signal at this frequency (Figure 6-3b).  
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Figure 6-3: The amplitude of oscillatory stimulation differentially regulates the output 

signal with maximal entrainment at 25 µM.  

We applied the same 2.78 mHz signal to cells but altered the amplitude of the input via 

H2O2 concentration. We repeated the same experiment at (a) 10 µM (b) 25 µM (c) 50 µM 

and (d) 100 µM. The dominant frequency histograms are shown for each experimental 

condition and clearly show entrainment only for the 25 µM condition. The frequency 

domain is reduced to 10 mHz for easier visualization. 

 

 We concluded this concentration was ideal for eliciting the Ca2+ signal; 

concentrations lower than 25 μM H2O2 were not able to elicit the robust response and 

similarly, those concentrations tested above 25 μM H2O2 also had diminished 

responsiveness at the driving frequency, potentially due to cytotoxic effects of high ROS. 

From these results, all subsequent experiments were done with 25 μM H2O2. 



www.manaraa.com

 111 

6.3.3 Cellular Entrainment is Dependent on Input Frequency 

While keeping the concentration of H2O2 constant at 25 μM H2O2, the input frequency 

was varied in different experiments between 16.7 mHz (1 minute period) and 0.83 mHz 

(20 minute period). The cells responded to at least the initial input of H2O2 signal, but not 

all frequencies elicit the same entrainment seen with 2.78 mHz (Figure 6-4f-j). For 

instance, at the higher frequencies of 16.7 and 8.3 mHz cells did not respond to later 

inputs of hydrogen peroxide but instead appear to slowly diminish in intracellular 

calcium signaling (Figure 6-4f-g). This was corroborated by the histograms of dominant 

frequencies, which show very low or no response in the frequency domain at the driving 

frequency, as denoted with the green arrow (Figure 6-4a,b).  

 

Figure 6-4: Differences can be seen in output signal with different input frequencies of 

H2O2.  

We applied oscillating 25 µM H2O2 input signals to the cells at various frequencies: (a,f) 

16.7 mHz, (b,g) 8.33 mHz, (c,h) 2.78 mHz, (d,i) 1.67 mHz, (e,j) 0.833 mHz. The 

dominant frequency histograms are shown in (a-e) with the respective driving frequency 

denoted by the green arrow. Corresponding heatmaps showing the first 100 cells from a 

representative experiment are shown in (f-j). The frequency domain is reduced to 20 mHz 

for easier visualization. 
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 This could potentially be the result of fatigue of the system, such that the calcium 

signaling mechanistically cannot recover and respond at this rate. For experiments done 

at lower frequencies, the cells appear to recover between oscillations and exhibit an 

increase in calcium signaling when the environment is altered, although this increase was 

not sustained through the duration of H2O2 application (Figure 6-4i,j). These higher 

frequencies elevate the H2O2 in the cellular environment for longer periods, potentially 

harming the cell or exhausting the calcium signaling. The cellular response heatmaps also 

demonstrate the same theme of population heterogeneity; single-cells often have varying 

responses to the same input signal and this approach best captures those differences. The 

majority of cells can be seen responding in the 2.78 mHz frequency with the greatest 

entrainment. 

6.3.4 Second Order System Model Describes the Behavior of T Cells in Response 

to Varying Stimulation 

Once the above analysis was performed for each experimental condition (Figure 6-4), the 

gain and phase of individual cells was compiled across at least 3 independent 

experiments for each frequency (Figure 6a-d). It can be seen here that there is a definitive 

peak in the gain response and the 6 minute period emerges as compared to all others 

(Figure 6a,b). It should also be noted that there is a drop in phase as the frequency 

increases concomitant with an increase in variability.  
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Figure 6-5: The Bode plot representation of the data is well approximated with second 

order behavior with a resonant frequency at approximately 6 minute oscillations (2.78 

mHz).  

All error bars are shown as median with the inter-quartile range to show the distribution 

of the population. Gain was calculated for individual cells and plotted as (a) the median 

with interquartile range and (b) a scattered dot plot where each dot represents a single-

cell calculation. Phase was similarly calculated for individual cells and plotted as (c) the 

median with interquartile range and (d) a scattered dot plot where each dot represents a 

single-cell calculation. This experimental data was fit to a second order transfer function 

as shown in (e-f). 

 

More specifically, there is a noticeable decline in gain and phase past the 2.78 

mHz experimental condition, indicating a decrease in the cell’s ability to entrain to 

periods lower than 6 minutes. This conclusion is in line with previous reports of 

biological systems behaving as low-pass filters [281]. As cells must filter out numerous 

environmental cues and assimilate them to mount a response [282-284]; it would require 

a great energy expenditure to respond to every fluctuation in the environment. As such, 

these cells appear to filter out signals above and below the experimental condition of 2.78 

mHz, but can still be seen entrained slightly with the 10 and 20 minute period conditions. 

This visualization also provides an unparalleled view of single-cell responses within a 
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population of genetically similar Jurkat T cells, which has a surprisingly large variation in 

magnitude. 

 We sought a transfer function to enhance our understanding of the underlying 

biological network while providing a model for future hypothesis driven experimentation. 

The experimental data suggested a resonant frequency at approximately 2.78 mHz and 

damping. This data trend aligns with an overdamped, second order transfer function of 

the form: 

 

𝐻(𝑠) = 𝐾 ∗
1

𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛2
 

Equation 6-31 

 

where K is the system gain, ωn is the natural frequency in rad/s, and ζ is the damping 

factor. When fit to the median of the experimental conditions across various frequencies, 

and our resultant transfer function aligned well (Figure 6-5e,f). 

 We then subdivided the population of cells into quartiles based on the gain 

response and again fit the data to a second order band pass filter to compare the 

parameters between subpopulations (Figure 6-6 and Table 6-3). For the top 25% of cells, 

we see a much more damped system result, and a decrease in the range of phase values 

compared to both the population and to the bottom quartile. This interesting result 

suggests that the cells with highest gain values appears to have a less variable phase 

response, implying cells are more in phase with one another than when visualizing the 

entire population. This is not true for the bottom quartile, as the phase variation appears 

to be more similar to the population of cells. Although cells are not sampled for different 
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input frequencies, we highlight the potential for different cells within the population to 

have distinct and separate filtering capabilities.  

 

Figure 6-6: Bode Plot Fits for Different Portions of the Population. 

We subdivided the population into quartiles based on the gain response and looked at the 

resulting transfer function fits for the (a) entire population, (b) top quartile, and (c) 

bottom quartile. Experimental Data is shown in orange as median +/- SD. The fit for H(s) 

is shown in blue. 

6.3.5 ROS and Calcium Model: Fit and Frequency Response Analysis 

Using the same genetic algorithm optimization approach as in 6.2.5, we fit the Ca2+ ROS 

model to data obtained in literature. As can be seen in Figure 6-7, we were able to 

optimize parameter values to obtain a good fit of the experimental data. This exercise 

showed the ability of our model to describe discrete changes in experimental conditions, 

such as the bolus addition of an inhibitor or H2O2. 
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Figure 6-7: ROS Ca2+ Model Optimized Parameter Fit. 

 

 Furthermore, we found a steady state for the model, perturbed it with the 

application of a single bolus addition of H2O2 and observed the model behaved as 

expected and without an apparent nonlinear oscillatory behavior (Figure 6-8). This 

suggested the model was relatively stable in this regime and could potentially be driven 

with an oscillatory input without becoming unstable. 
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Figure 6-8: Optimized Model Perturbation with Bolus H2O2 Addition. 

 

 To test this hypothesis, and the stability of the model, we characterized and 

applied an oscillatory extracellular H2O2 condition, represented by a sine wave, and 

observed the behavior of intracellular species (Figure 6-9). In this exercise, we kept the 

lowest value of extracellular H2O2 consistent with the calculated steady state value and 

varied the height amplitude between 0.01 and 0.3, observing unexpected resulting 

behavior of the system. For instance, the steady state levels of Cacyt appear to vary based 

on the amplitude of ROSext (Figure 6-9). Although all responses exhibit the same 

oscillatory behavior, the minimum and maximum values vary between amplitude values, 

with the highest amplitudes resulting in average concentrations of Cacyt that are above the 

maximum level seen for lower amplitudes. From this, we propose the system can be 

modulated not only by the frequency applied, as witnessed from experimental results, but 

also the potential for the system to be modulated by the amplitude of signals it receives. 
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Figure 6-9: Frequency Response Analysis of the Optimized ROS Ca2+ Model. 

The model was driven with a sinusoidal input of ROSext and the resulting dynamics were 

observed for other species in the model. Amplitude of the initial input signal was varied 

and is represented by the color of the response. 

 

 We also varied the frequency of the input signal for a given amplitude and 

compiled the results in a Bode Plot in Figure 6-10. This Bode Plot representation 

suggests the system acts as a low pass filter, attenuating signals of high frequency while 

exhibiting behavior to signals of low frequency. Not all species included in this model 

exhibit the same filter characteristics, and this suggests different components of the 

complex signaling network are receiving and encoding different aspects of the functional 

response of T cells in response to the oscillatory conditions. Another interesting finding 

from this in silico perturbation is that not all frequencies give rise to the same average 

steady state. In fact, it is easily seen that the higher amplitude inputs give rise to higher 

average levels of downstream signaling molecules, such as Cacyt. Corresponding to this 

increase in Cacyt, and ROSER we also observe a decrease in the average level of CaER, 

indicating the ER stores are more depleted with higher amplitude oscillatory signals when 

compared to lower amplitude simulations. By using in silico perturbations, we are able to 
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generate testable hypotheses without running preliminary experiments. With the use of 

our microfluidic device, these experiments could be run in vivo. 

Figure 6-10: Bode Plot of the Optimized ROS Ca2+ Model. 

6.4 Discussion 

Cells are constantly responding to dynamic environmental conditions through 

intracellular Ca2+ signaling. Yet questions remain unanswered about how cells are able to 

use this secondary messenger to elicit a wide range of context dependent responses. 

Recent reports have indicated that the answer lies in better understanding the diverse 
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spatiotemporal dynamics giving rise to infinite patterns of Ca2+ responses [21, 70]. Ca2+ 

signaling is believed to increase information transmission by reducing extrinsic noise 

factors on the signal to noise ratio for intracellular signaling cascades [285].  However, 

current technological approaches limit the delivery of environmental cues and subsequent 

analysis of single-cell behavior. We contribute novel findings to the field by combining 

microfluidic and computational technologies to overcome this technical barrier and gain a 

better understanding of Ca2+ signaling in T cell lymphocytes through frequency response 

analysis.  

 Using frequency response analysis, it is possible to probe intracellular signaling 

networks, without prior knowledge of the system, by applying an oscillatory input 

stimulus and calculating the gain and phase of the resulting output signal. Using this 

approach, we were able to monitor cytoplasmic calcium in response to H2O2, a reactive 

oxygen species that has been shown to be upregulated in T cell activation and plays a role 

in signal transduction. This unprecedented view of the interplay between calcium and 

H2O2 also delineates differences between individual cells in response to the same, 

robustly controlled, environmental signals. Such a view provides novel insight both for 

intracellular signaling dynamics as well as for differences between cells in a relatively 

clonal population. 

 To examine the interplay between these two signaling molecules, we applied 

oscillatory H2O2 at varying frequencies and amplitudes and compiled a Bode Plot with 

the results to obtain the estimated resonant frequency and damping coefficient of this 

second order system. We found an oscillatory H2O2 signal was able to entrain the calcium 

dynamics unlike either constant media or H2O2 controls (Figure 6-2). Further, we 
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sampled different amplitudes, or concentrations, of the input H2O2 signal and found an 

optimal concentration of 25 μM H2O2 (Figure 6-3). This aligns with previous literature 

suggesting different concentrations of Ca2+ stimulation can result in oscillatory or 

refractory signaling [106] and suggests the 25 μM H2O2 concentration is within the 

oscillatory regime of stimulation for our sampled system. With this concentration held 

constant, a frequency sweep was performed for 5 different frequencies and results 

showed a damping of signals both above and below the optimal frequency of 2.78 mHz 

(Figure 6-4).  

 This was the first application of a sinusoidal input to T cells to our knowledge but 

can be compared to previous reports of T cell transcriptional encoding with Ca2+ spikes at 

varying frequencies. Observed Ca2+ frequencies vary based on cell type and stimulation, 

with values on the order of tens of Hz in excitable cells to the order of mHz for non-

excitable cells [286]. Our observed system falls within this reported range, with the 

natural frequency estimated to be at approximately 2.78 mHz for our non-excitable T cell 

system. The cell must decode these frequencies, usually by sensing molecules that can 

appropriately modify their behavior [71]. On a molecular level, Ca2+ is binding to 

phosphatases and kinases to affect downstream targets and these on-off kinetics are most 

likely responsible for decoding a range of possible frequencies. With oscillations below 

appropriate frequencies, the signal cannot integrate to mount a response. Ca2+ binds to 

many effectors with high cooperatively and high dissociation, again supporting the idea 

that a range of moderate frequencies, corresponding to these kinetics, encodes more 

information than constant Ca2+ signals or high frequency signals [70]. Multiple proteins 
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involved in T cell activation are thought to be appropriate for this signaling, including 

PLC-γ [75, 76], PKCβ [77] and the mitochondrial Ca2+ uniporter [78]. 

 The next step in this signaling pathway is transcription of appropriate genes, and 

one would assume this is maximally achieved within the range of natural frequencies, 

hence the necessity of appropriately timed Ca2+ oscillations. It has been shown for 

multiple genes that maximal expression is tuned to particular Ca2+ signaling 

characteristics. NFAT is activated by Ca2+ through dephosphorylation and subsequent 

nuclear translocation, and has been shown to decode Ca2+ oscillations in T cell 

lymphocytes with a maximal response of 2.5-10 mHz [22] or 1-11 mHz Ca2+ frequencies 

[287]. Although differences exist in experimental design, our data falls within these 

effective ranges and supports our conclusions of 2.78 mHz being the natural frequency of 

oscillation. NFκB is another potential decoder for Ca2+ oscillations and was shown to 

have its highest response between 0.56-10 mHz [22]. Differences in frequency decoding 

between NFAT and NFκB may lie in the ability of NFκB to remain in the nucleus longer, 

thus enabling faster dynamics to still increase expression [70, 216, 288]. Experimental 

techniques varied between studies, with differences in input signal shape as the previous 

reports stimulated with constant pulse widths and altered the inter-spike duration for a 

duty cycle between 0.028 and 0.5 whereas we chose to use a square wave with a duty 

cycle of 0.5, such that the stimulation and buffer would each be applied for an equal 

amount of time. The second clear difference is our investigation of Ca2+ signaling in 

response to H2O2 stimulation whereas Ca2+ has previously been directly controlled 

through chemical clamping. In our approach we conclude H2O2 signaling modulates Ca2+ 
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oscillatory kinetics within an effective range necessary for downstream transcription 

factor activation. 

 Our investigation of Ca2+ kinetics is the first to compare the Ca2+ response in T 

cells as a Bode plot across frequencies. In our system, we show a clear entrainment of 

cells with a 6 min period and a cutoff frequency between 1 and 2 minutes. We fit the gain 

and phase of the population of cells to a 2nd order transfer function for the system 

(Figure 6-5). With this model representation, we have reduced the number of parameters 

down to 3: n, , and K. Reducing the system to a smaller model while retaining the 

pertinent responses in the frequency domain provides a unique platform for in silico 

perturbation of the interactions between Ca2+ and H2O2 in future work. Further, it can be 

compared with subsets of the mechanistic model to determine dominant feedback 

controls of the large system through model reduction. This suggests that the pathways 

involved with Ca2+ signaling in response to H2O2 exhibit a natural frequency of 

approximately 2.78 mHz and suggest this is optimal for signal transmission to particular 

downstream effectors. This will be further explored in Chapter 7. 

 All experimental results showed great population heterogeneity, with a wide 

range of responses that could not be easily captured with any other experimental design. 

These single-cell differences could be the result of stochastic differences in gene 

expression, growth phase of the cells, or epigenetic alterations that keep a plethora of 

responses at the population level response for mounting an effective immune response 

[289]. Future experiments may attempt to control or visualize more of these levels of 

variability for a more complete understanding of the underlying mechanisms. 
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 We observed from the modeling system that the resulting behavior of the system 

to an oscillatory input varies not only by applying different frequencies to the system, but 

also by applying different amplitudes as well. This suggests that the system can be 

modulated not only by the frequency applied, as witnessed from experimental results, but 

also from the amplitude of the signals it receives. This mechanism would provide yet 

another level of encoding for the ubiquitous Ca2+ signaling to overcome the universality 

of the ion in numerous signaling systems. In other words, there are multiple dimensions 

to which Ca2+ kinetics can encode important information about the environment for the 

cell to decode in a sophisticated, multifactorial process. Our approach not only recognizes 

some of these challenges, but also begins to understand how systems can behave 

differentially to these dynamic, oscillatory input signals.  

 Oscillating cytoplasmic calcium spikes have been shown to encode a variety of 

transcription factors in a complex way [247]. The ability to extract more of this encoded 

information using frequency response analysis will shed light on potential dominant 

feedback connections and new therapeutic targets. We report a widely applicable 

platform of technology advancements that enable complex and intelligent perturbation of 

Ca2+ signaling. This includes a microfluidic device enabling uniform, dynamic 

stimulation of suspension cells, and a set of analysis techniques to gain single-cell 

resolution. Together, this approach can be utilized for different cell types and signaling 

molecules of interest. We demonstrated this applicability on Jurkat T cells by probing 

Ca2+ dynamics with H2O2 and found novel biological insight that Ca2+ signals exhibit a 

natural frequency and our results align with literature reports of maximal downstream 

transcription.  
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CHAPTER 7  HYDROGEN PEROXIDE SIGNALING AND 

SUBSEQUENT TRANSCRIPTIONAL RESPONSE TO ROBUST 

CALCIUM OSCILLATIONS 

7.1 Introduction 

We showed in Chapter 6 that Jurkat T cells respond with oscillatory Ca2+ signaling when 

stimulated with dynamic H2O2 pulses and maximal entrainment is observed at 2.78 mHz, 

corresponding to a period of six minutes. We then sought to better understand the 

relationship by visualizing the time dependent H2O2 concentration in various organelles 

in response to oscillatory Ca2+, switching the input and output signals from our previous 

work. Furthermore, we were able to couple this signaling behavior assay with the 

downstream transcriptional response. 

 We accomplished this using the same microfluidic platform, capable of uniform, 

dynamic stimulation of cells, paired with stably transfected Jurkat T cells. Following 

stimulation, cells were fixed on-chip and hybridized with smFISH probes for 

characterizing the downstream transcriptional response with single-cell resolution. We 

utilized the recombinant protein described in Chapter 3, HyPer-Mito, as well as the 

cytosolic localized version of the protein, HyPer-Cyto. These stably transfected Jurkat T 

cells enable us to visualize dynamic H2O2 traces with information on spatial localization 

and time dependent responses to Ca2+ signaling, a view that has been previously 

unachievable due to technically limitations. The innovative combination of microfluidics 

and the recombinant protein HyPer overcomes these experimental barriers and provides 
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novel biological understanding into the relationship between Ca2+ signaling and 

downstream H2O2 response. 

7.1.1 ROS Production During T Cell Activation 

The major source of ATP synthesis in eukaryotic cells is mitochondrial oxidative 

phosphorylation. This process includes a network of respiratory H+ pumps, known as 

complexes I-IV, on the mitochondrial inner membrane that sustain a H+ gradient across 

the membrane. During this process, electrons are removed from reducing substrates and 

transferred to O2. The potential energy stored in this gradient is released to be used by 

complex V for ATP synthesis [90]. O2 is chemically reduced via the following 

progression: 

O2 → O2
− ∙ → H2O2 → OH ∙ → H2O 

 

where multiple reactive oxygen species (ROS) are formed in the process. There is a large 

body of evidence implicating ROS in damaging proteins, lipids, DNA, and other cellular 

components [290-293]. More recently, there have been reports of mitochondrial ROS 

acting as part of redox signaling within the cell, highlighting the shift in thinking to ROS 

behaving as potential secondary messengers [294, 295]. Thus, mitochondrial oxidative 

phosphorylation appears to delicately balance the maximal production of ATP by 

reducing O2 to H2O while simultaneously protecting the cell by producing only levels of 

ROS necessary for signaling and proper homeostasis within the cell [296]. Superoxide 

(O2
− ∙ ) is the primary ROS made within mitochondria, and this is quickly converted to 

H2O2, via the reaction above, by SOD or spontaneous dismutation. O2
− ∙ is mainly 

produced via the ubisemiquinone radical intermediate (QH∙) at complex III of the 
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electron transport chain and complex III inhibitors, such as antimycin A shown in 

Chapter 3, increase ROS production by inhibiting subsequent steps of the process [297-

299]. Other sources of ROS generation in the mitochondria include complex I, but the 

significance is not clear [90]. ROS production is also known to be regulated, with 

exponential dependence, on the mitochondrial membrane potential [300]. 

 Mitochondria also play a role in many other important processes within the cell, 

such as steroid hormone synthesis, lipid metabolism, and Ca2+ homeostasis [301, 302]. 

During Ca2+ signaling, mitochondria are known to transport Ca2+ through their double 

membrane into the mitochondrial matrix, thus buffering the influx of Ca2+ into the 

cytoplasm. This transport is mediated via voltage-dependent anion channel (VDAC) on 

the outer membrane and the mitochondrial Ca2+ uniporter (MCU) on the inner membrane, 

in accordance with the membrane potential (ΔΨm) [89, 301]. There is also a “rapid-

mode” uptake (RaM), which allows millisecond alteration of mitochondrial Ca2+ 

concentrations to mirror that in the cytosol [303].  

 Once Ca2+ enters the mitochondria, its primary function is to activate oxidative 

phosphorylation and drive ATP production [304-312]. This effect is manifested via a 

concerted effect of Ca2+ in induced allosteric effects on many proteins, such as pyruvate 

dehydrogenase and isocitrate dehydrogenase [308, 309]. This upregulation allows cells to 

respond to Ca2+ signaling by producing the high levels of ATP necessary for the resulting 

energy expenditure in the functional cellular response. Ca2+ can also trigger pathological 

effects, such as cytochrome c mediated apoptosis, in the presence of other stimulants 

through the permeability transition pore (PT) [313-315]. Mitochondrial function is also 

dependent on the structure of the organelle, which is quite dynamic in nature; 
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mitochondria go through fission, fusion, and change their shape [316, 317]. It is 

hypothesized this enables the proper distribution of mitochondria present in the cell to 

provide localized ATP delivery [90]. 

 To better understand mitochondrial function and the how Ca2+ signaling can 

stimulate either physiological or pathological responses in the cell, we explore the ROS 

production in T cells in response to an oscillatory Ca2+ signal. Since ROS generation is 

dependent on QH∙, it can be upregulated by either an increase in oxidative 

phosphorylation, or inhibition of the distal electron transport chain, as discussed above. 

ROS production by the mitochondria correlates with metabolic rate, suggesting an 

increase in electron chain leakage [318, 319]. Ca2+ is also known to stimulate nitric oxide 

synthase (NOS) to produce NO∙, which inhibits complex IV, again increasing ROS 

production [296]. Yet these theoretical predictions do not capture the diverse set of ROS 

observations seen in response to Ca2+ signaling, suggesting there are other factors to 

consider. For instance, it appears application of Ca2+ alone actually reduces ROS 

production from complexes I and III. However, when Ca2+ is applied in conjunction with 

either complex inhibitors or uncouplers, the ROS generation was shown to increase 

[320]. For instance, Ca2+ added to rate heart mitochondria with antimycin A increased 

ROS generation, potentially because Ca2+ uptake mildly uncouples the mitochondria, or 

in other words, dissipates ΔΨm. This uncoupling could be attributed to changes in the pH 

gradient across the mitochondrial membrane, affecting downstream generation of HO2 ∙/ 

O2
− ∙ [321]. However, another experiment showed a contrasting result where Ca2+ and 

antimycin A treatment of brain mitochondria did not stimulate complex III ROS 

generation [322]. There was some increase in complex I ROS formation, because upon 
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treatment with Ca2+ and rotenone (a complex I inhibitor), ROS generation was markedly 

decreased [323]. It was further noted that while the uncoupling of the ΔΨm lasted only a 

few seconds from Ca2+ influx, the ROS decrease was continued for a few minutes, 

suggesting the mechanisms of ROS decrease was not from the alteration in ΔΨm [300]. In 

summary, there appears to be a general consensus that ROS production is diminished by 

Ca2+ influx from both complex I and III, but increases upon treatment with inhibitors and 

it is not well understood what pathways account for these differences [262]. There are 

interactions between Ca2+ and mitochondrial energy metabolism, but it is not entirely 

clear what role ROS production plays into these complex signaling networks. In this 

work, we seek to visualize H2O2 with the redox sensitive reporter, HyPer, localized either 

within the cytoplasm or mitochondria. From this unprecedented view, we are able to 

make conclusions about Ca2+ induced ROS regulation in T cells that unveil some of the 

unknown aspects of signaling. 

7.1.2 Ca2+ Frequencies and Transcriptional Changes 

Upon activation, T cells undergo intracellular signaling that alters gene expression and 

downstream function of the cells to accomplish the multitude of tasks necessary for the 

adaptive immune response [1]. Throughout this work, we have demonstrated the utility of 

viewing Ca2+ signaling in the frequency domain, motivated by previous reports of the 

functional response of downstream effectors to oscillatory stimulation [22, 324]. In the 

literature, it’s been shown in T cells that NF-κB, NF-AT and Oct/OAP are all activated at 

high frequency stimulation with Ca2+ and low frequencies activate only NF-κB [22]. This 

dependence of proinflammatory transcription factors on frequency of Ca2+ oscillation 

illustrates the necessity to investigate Ca2+ kinetics in the frequency domain. HEK293 
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cells were similarly investigated with application of an oscillatory GPCR signal, 

upstream of Ca2+, and the resulting NF-AT localization demonstrated high pass filter 

characteristics in response to observed Ca2+ oscillation. 

 Different techniques are available to stimulate calcium, one of which includes the 

use of the small molecule inhibitor thapsigargin [22]. Thapsigargin depletes intracellular 

stores of Ca2+ by blocking endoplasmic reticulum Ca2+ ATPases while simultaneously 

and irreversibly activating CRAC channels on the cell membrane [325]. The resulting 

Ca2+ signaling is then dependent on the extracellular Ca2+ concentration the cells are 

immersed in. We will utilize this experimental framework to experimentally drive Ca2+ 

signaling in a robust manner to subsequently monitor simultaneous H2O2 signaling in 

response to Ca2+. Downstream transcription can also be monitored on chip with smFISH, 

a revolutionary approach to monitor single-cell gene expression. Ultimately, with the use 

of microfluidics, we are able to combine multiple levels of regulation for single-cell 

observation; Ca2+ signaling and H2O2 production is monitored on the timescale of 

seconds and downstream transcriptional response can be monitored two hours post 

stimulation. 

7.1.3 Single Molecule Fluorescent In Situ Hybridization 

Cellular response to intracellular signaling usually includes an altered pattern of gene 

expression and single-cell expression levels often vary substantially form the population 

average [326]. Many methods provide the population average of cells, such as Northern 

blot, PCR, and RNA-seq, with only recent advancement in single-cell visualization and 

quantification [327]. For cells loaded and stimulated in our device, it is not possible to 

remove them for single-cell quantification systems such as Fluidigm [328], so we 
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investigated approaches that could be accomplished on chip for single-cell resolution of 

the transcriptional response to oscillatory Ca2+ stimulation.  

 To accomplish this, we modified a recently developed protocol based on in situ 

hybridization in which single mRNA molecules can be detected in single-cells [329]. 

This procedure, known as smFISH, utilizes oligonucleotide probes with a sequence of 

interest bound to fluorophores for detection with fluorescent microscopy [329]. Multiple 

fluorophores can be imaged on a single sample, allowing several probes to be used for 

different mRNA targets in a given cell. We used two probes commercially available to 

investigate specific molecules involved in T cell activation: FOS and HIF1(Biosearch 

Technologies).  

 FOS expression is dependent on activation of protein kinase C (PKC) during T 

cell activation [330, 331]. PKC activation is often achieved through phorbol ester 

stimulation, but it has been shown that Ca2+ signals also activate PKC through increased 

DAG [332, 333] and in a frequency dependent manner [334]. Nuclear Factor of Activated 

T cells (NFAT) is responsible for downstream transcriptional responses via interactions 

with other molecules upon activation. NFAT must be dephosphorylated for translocation 

to the nucleus and binds cooperatively to AP-1 complex (which includes FOS) and binds 

regulatory domains of inducible genes for immune cell function, such as IL-2 [331, 333, 

335]. With the described frequency dependence of PKC on Ca2+ signaling, we utilized 

this previously characterized smFISH probe for monitoring the transcriptional activity of 

FOS to oscillatory Ca2+ activation, ultimately obtaining a functional readout of the cell to 

frequency stimulation on our microfluidic platform. 
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 Hypoxia-inducible factors (HIF) are known transcription factors, usually 

heterodimeric in nature, and are constantly degraded in normal O2 conditions by the von 

Hippel-Lindau (VHL) complex [336]. In low O2 environments (hypoxia) the subunits, 

HIF1 and HIF2 are not targets of VHL and localize to the nucleus upon dimerization 

with HIF1. Once in the nucleus, target genes are transcribed to combat the altered O2 

environment [337]. It has also been shown that HIF1 can be upregulated in response to 

signals facilitated by TCR under hypoxic conditions [338]. While measuring H2O2 

response in T cells with the recombinant protein HyPer, we can indirectly visualize 

changes in O2 homeostasis within the cell. We thus complemented this signaling 

information with smFISH probes capable of characterizing the downstream activation of 

HIF1. 

 Elucidating the transcriptional response to upstream intracellular signaling is 

important for understanding the ramifications of Ca2+ kinetics in a more informative way. 

To accomplish this, we demonstrate the ability of our microfluidic device to not only trap 

and dynamically stimulate T cells, but also to serve as a platform for hybridization with 

smFISH probes and ultimate high resolution imaging of multiple fluorophores, 

corresponding to mRNA transcripts, in a single-cell. This highlights our ability to 

transcend current experimental techniques and combine multiple levels of cellular 

response with single-cell resolution. 
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7.2 Materials and Methods 

7.2.1 Cell Culture 

The Jurkat E6-1 human acute T cell lymphoma cell line was used for all experiments 

(American Type Culture Collection). Cells were grown in conditions as described before 

[215] and in previous chapters. Briefly, the cells were cultured in RPMI 1640 without 

Phenol Red (Lonza) and with L-glutamine (Sigma-Aldrich), supplemented with 10 mM 

HEPES buffer (Corning), 1 mM sodium pyruvate (Cellgro), 50 units mL-1 penicillin-

streptomycin (Cellgro), 1x MEM nonessential amino acids (Cellgro), and 10% fetal 

bovine serum (Sigma-Aldrich). 

 For those experiments visualizing cytoplasmic Ca2+ concentration in response to 

varying stimulation, the cells were loaded in 1x calcium and magnesium free HBSS 

without Phenol Red (Cellgro) with 5 μM Fluo-3 AM, cell permeant (Life Technologies) 

and 0.05% w/v Pluronic F-127 (Sigma-Aldrich) for 30 minutes at 37°C. Following the 

incubation, cells were washed once and subsequently resuspended in 1 x calcium and 

magnesium free HBSS without Phenol Red. Cells were loaded into the device at a density 

of 1 x 106 cells/mL. 

7.2.2 HyPer Transfection and Stable Line Creation 

To visualize the dynamics of hydrogen peroxide production in the mitochondria and 

cytoplasm using fluorescent microscopy, we used stably transfected Jurkat cell lines of 

either pHyPer-dMito or pHyPer-dCyto plasmids (Evrogen). The original transfections 

were done in a Neon Transfection System (Life Technologies) as described in Chapter 3. 

Stable lines were created using neomycin (G418, KSE Scientific) antibiotic selection, as 
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described in Chapter 3. Upon thawing stocks from cryopreservation, a maintenance 

concentration of 0.6 mg/mL G418 was continued in cell culture. 

 To enhance signal for visualization, the stable cell lines were further sorted using 

a BD FACS Aria IIIu cell sorter (BD Biosciences). Cells were gated based on FSC and 

SSC using untransfected Jurkat cells as a negative control. The top ~20% of the 

population was sorted based on GFP fluorescence once and then cultured as described 

above and used in subsequent experiments.  

7.2.3 Ca2+ Clamping with Thapsigargin 

To inhibit endoplasmic reticulum Ca2+ ATPases and irreversibly open CRAC channels, 

we chemically clamped the cells with thapsigargin (Sigma Aldrich) [22]. HyPer-cyto or 

HyPer-mito stably transfected cells were suspended with 1 μM thapsigargin at 1 x 106 

cells/mL in 1 x HBSS without calcium, magnesium, or Phenol Red (Cellgro). Cells were 

incubated at room temperature for 5 minutes, spun down at 70g, and resuspended in 1 x 

HBSS without calcium, magnesium, or Phenol Red.  

 Devices were assembled and autoclaved before use. Devices were primed with 

sterile filtered PBS in the stimulus layer and 2% BSA in HBSS for the cell trapping layer. 

Cells were loaded into a primed device according to [220]. Cells were stimulated with 

either 1.5 mM Ca2+ or 2 mM EGTA . The Ca2+ solution was prepared with CaCl2 (Sigma-

Aldrich) in calcium, magnesium, and Phenol Red free HBSS. The EGTA solution was 

similarly prepared with EGTA (Boston BioProducts) in calcium, magnesium, and Phenol 

Red free HBSS. For the EGTA control, only the 2 mM EGTA solution was applied to 

cells, but it was switched at the designated frequency to control for the mechanical stress 

cells experience. The HBSS control experiment again controlled for mechanical stress of 
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solution switching, but cells were exposed to only one solution: HBSS without Phenol 

Red and with calcium and magnesium (Cellgro).  

 Cells were stimulated for one hour while being imaged at 20x on a Perkin Elmer 

UltraVIEW Vox spinning disk confocal microscope and images were acquired on a 

Hammamatsu C9100-23b back-thinned EM-CCD using the 405 nm and 488 nm laser 

lines for excitation of the reduced and oxidized version of the protein, respectively. 

Emission for both channels was obtained using the same emission filter at 525 nm. 

Images were acquired at the maximal frame rate for two regions of interest within the 

device using the motorized stage. Images were collected with an exposure time of 800 ms 

and exported from Volocity as tif files for analysis in MATLAB® (Mathworks) using 

custom scripts. 

7.2.4 smFISH 

Protocol was modified from a protocol developed by Loice Chingozha from the Lu Lab. 

Following stimulation with oscillatory conditions, cells were incubated for 1 hour at 37°C 

in EGTA solution before being fixed with 4% PFA (Alfa Aesar) in nuclease free water 

(Life Technologies) for 10 minutes at room temperature. Following this, methanol is 

introduced into the device to permeabilize cells for at least 1 hour at 4°C. Following 

permeabilization, cells are washed for 30 minutes at room temperature with a wash buffer 

containing 2x SSC (Ambion) and 10% formamide (Ambion) in nuclease free water. 

Following this, cells are incubated with hybridization buffer and 100 nM concentration of 

predesigned smFISH probes for Human FOS and Human HIF1α (Biosearch 

Technologies) overnight at 37°C. Hybridization buffer is prepared with 0.1 g/mL dextran 

sulfate (Sigma), 2 x SSC solution (Life Technologies), 200 μg/mL UltraPure BSA 
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(Ambion), and 10% formamide (Ambion) in nuclease free water. Cells are then washed 

again with the wash buffer for 30 minutes at 37°C and then immersed in an anti-fade 

imaging buffer. Glox buffer is prepared previously with 2x SSC solution (Life 

Technologies), 0.4% w/v glucose (Sigma), and 10 mM Tris HCl (Ambion) in nuclease 

free water. The imaging buffer is then prepared with the addition of 1 μL 3.7 mg/mL 

glucose oxidase (Sigma) in 50 mM sodium acetate (Ambion), and 1 μL catalase in 

ammonium sulfate suspension, ≥4000 units/mg (Sigma) to 100 μL glox buffer. 

7.2.5 smFISH Image Analysis 

Protocol was modified from a protocol developed by Loice Chingozha from the Lu Lab. 

Fixed and hybridized cells were imaged at 100x using the Perkin Elmer UltraVIEW Vox 

spinning disk confocal microscope and images were acquired on a Hammamatsu C9100-

23b back-thinned EM-CCD. Z-stacks were obtained with 200 nm spacing using a Piezo 

stage and 47 images per stack were analyzed for all cells. Cells were focused using the 

Nikon Perfect Focus System module to account for drift over time in the stage. Cells 

were hybridized with both FOS and HIF1α smFISH probes simultaneously, and they 

were imaged in the RFP and Cy5 channels, respectively. The probes used for smFISH are 

fluorescently labeled and appear bound to target mRNA as diffraction-limited spots 

[339]. FISH-quant is automatic image analysis software capable of detecting these spots 

in 3D z-stacks and providing counts of mRNA transcripts present in single-cells [339]. 

We used this MATLAB® GUI to perform all analysis of smFISH images collected [339]. 

Briefly, we outline cells using the Outline Designer by identifying cells using the FOS 

and bright field images obtained. This outline is then applied to both the FOS and HIF1α 

z-stacks and images are filtered with a two-step approach. The first filter is used to 



www.manaraa.com

 137 

estimate and remove background with a Gaussian filter of kernel size 5. The second filter 

is used to increase the signal-to-noise ratio (SNR) with a smaller Gaussian filter with a 

kernel size of 1. Following this, all spots are identified from the filtered image with sigma 

xy below 468 and sigma z below 1761. Spots are then further thresholded based on 

filtered image pixel intensity (between 100 and 1000) and sigma xy (between 35 and 

446). These values were chosen from looking at a population of cells and removing the 

spots that fall outside of the approximately normal distribution according to 

recommendations in the GUI documentation [339]. Cell location is identified in the 

device and compared to the HyPer signaling studies. 

7.2.6 Clustering 

Each device had two positions imaged at 20x to capture more single-cell traces. These 

cells were combined together for each device and subjected to hierarchical clustering 

using the built in MATLAB® clustergram function (MathWorks). Cells were clustered 

based on the time series data, with each measurement in time representing a variable. 

Standardization was performed on variables with the mean centered at zero and a 

standard deviation of 1. Distance was calculated using the ‘cosine’ metric and linkage 

was determined using the default setting, ‘average’. These metrics consistently pulled out 

similar clusters between experiments. There were two clusters in each experiment, 

corresponding to: 1. cells with high H2O2 fluorescence throughout the experiment and 2. 

cells with consistently lower H2O2 fluorescence. The corresponding dendrogram was 

colored in red and blue, respectively.  
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7.3 Results 

7.3.1 Cells are Chemically Clamped with Thapsigargin 

As both the HyPer protein and many cytoplasmic Ca2+ dyes both emit in the green visible 

spectrum, we can reliably only measure one at a time. To image H2O2 production in 

response to Ca2+, we chose to chemically clamp Jurkat T cells and control Ca2+ signaling 

via environmental perturbation with solutions of EGTA and CaCl2. Cells were treated 

with thapsigargin to inhibit Ca2+ ATPases on the endoplasmic reticulum and irreversibly 

activate CRAC channels [22]. The functional result of this chemical clamping was the 

inability of cells to store and release intracellular Ca2+ and hence, the Ca2+ concentration 

in the extracellular environment controls signaling. To characterize the pre-treatment 

with thapsigargin and delivery of extracellular Ca2+ in our device, we monitored 

cytoplasmic Ca2+ concentration through time for Jurkat cells loaded in the device. Cells 

were exposed to alternating environment of 2 mM EGTA or 1.5 mM CaCl2 with a 

frequency of 2.78 mHz, corresponding to a period of 6 minutes (Figure 7-1). The cells are 

clearly and robustly exhibiting Ca2+ signaling upon delivery of CaCl2  (Figure 7-1a). 

Furthermore, this delivery elicits a functional response at the same frequency as the 

driving frequency (2.78 mHz) with almost every cell exhibiting this as the dominant 

frequency when analyzed with spectral analysis (Figure 7-1b). From this characterization 

we confidently assume all Ca2+ signaling corresponds to the extracellular environment 

being supplied to the cells.  
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Figure 7-1: Characterization of Ca2+ Signaling with Thapsigargin Treatment. 

Cells are treated with Thapsigargin followed by oscillatory stimulation with 1.5 mM 

CaCl2 or 2 mM EGTA. (a) The resulting cytoplasmic Ca2+ concentration aligns with 

CaCl2 treatment in an oscillatory fashion. (b) Cells are stimulated with 2.78 mHz input 

frequency and dominant frequencies show a robust, repeatable response to stimulation at 

the driving frequency. Four replicates are combined in (b) and the frequency span is 

reduced to 10 mHz for easier visualization. 

7.3.2 Response of Cytoplasmic H2O2 to Ca2+ Oscillations 

Cells were treated with thapsigargin to inhibit their control of intracellular stores, 

enabling us to drive intracellular signaling. Cells were first treated with EGTA in a 

calcium free environment and then exposed to extracellular Ca2+ at a specified frequency. 

We imaged the response of cytoplasmic H2O2 production using the recombinant protein 

HyPer-cyto in stably transfected Jurkat T cells. Cells were normalized to the first time 

point and expressed as a function of time for easier visualization in Figure 7-2.  

 It is clear from analyzing individual traces that there is a wide range of variability 

in the responses, with some cells showing very little variation through time while others 

show an increasing, decreasing, or oscillatory response. We also noticed a clear drop in 

cytoplasmic H2O2 production upon stimulation with Ca2+ following EGTA treatment 
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(Figure 7-2). For both the 2.78 mHz and 1.67 mHz treatment conditions, at the 3 minute 

and 5 minute mark we see a subtle but reproducible decrease in cytoplasmic H2O2 

production, corresponding to the initial exposure of cells to Ca2+ in each experimental 

condition (Figure 7-2a-c,f-h). Two controls were run to ensure the responses seen were 

due to the Ca2+ signaling and not responses to loading or mechanical stimulation in the 

device. These controls kept the extracellular environment constant for the duration of the 

experiment (Figure 7-2d,e). Two conditions were used for these controls: constant EGTA 

or constant HBSS with Ca2+, both of which were mechanically switched at 2.78 mHz to 

control for any shear stress felt by the cells. The control cell traces showed very little 

variation through time, with the majority of cells remaining around the same fluorescence 

through time, suggesting the observed decrease in cytoplasmic H2O2 production seen in 

the treatment conditions was due to the imposed Ca2+ signaling Figure 7-2. 
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Figure 7-2: Cytoplasmic H2O2 Concentration in Response to Oscillatory Ca2+ Signals of 

Different Frequencies.  

Each cell is represented by a trace, and the average of all cells is designated with the 

thick, black line. Cells were exposed to oscillatory conditions of 2 mM EGTA or 1.5 mM 

CaCl2 with frequencies of (a) 16.7 mHz, (b) 2.78 mHz, or (c) 1.67 mHz. Two controls 

were obtained for these experiments were the environment was held constant for the cells 

but it was mechanically switched at a frequency of 2.78 mHz. These constant 

environmental conditions were (d) 2 mM EGTA and (e) HBSS with Ca2+ and Mg2+. Cell 

traces are normalized to the first time point acquired and visualized for 10 minutes total. 

For easier visualization, the range of fluorescence is reduced in f-j. 

7.3.3 Response of Mitochondrial H2O2 to Ca2+ Oscillations 

As mentioned previously, it has been shown that H2O2 production is localized to different 

organelles and mitochondria are one of the major sources of production during oxidative 

phosphorylation. Knowing this, we utilized this experimental platform to further explore 

the mitochondrial H2O2 production in response to EGTA and Ca2+ oscillatory stimulation 

using HyPer-mito stably transfected Jurkat T cell lymphocytes. Cells were individually 

analyzed and results were compiled to visualize dynamics during stimulation (Figure 
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7-3).  Again, there is a striking amount of variability between cells, highlighting the 

necessity of single-cell analysis to better understand the wide realm of potential responses 

to oscillatory Ca2+ signaling. There were also interesting differences between the two 

reporter lines, suggesting differences in H2O2 production between the cytoplasm and 

mitochondria. For instance, upon stimulation with Ca2+ following EGTA treatment, the 

HyPer-mito cells first showed a peak of production before a subsequent decrease in 

production (Figure 7-3). More specifically, for the 16.7, 2.78, and 1.67 mHz conditions, 

they showed an increase in fluorescence at the 30 second, 3 minute, and 5 minute 

timepoint, respectively, corresponding to the initial exposure of Ca2+ (Figure 7-3a-c). The 

control experiments with constant exposure to HBSS with EGTA or HBSS with Ca2+ 

showed very little variation through time, suggesting the visualized responses were due to 

the initial Ca2+ exposure and not an experimental artifact of mechanical stimulation in the 

microfluidic device. 
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Figure 7-3: Mitochondrial H2O2 Concentration in Response to Oscillatory Ca2+ Signals of 

Different Frequencies. 

Each cell is represented by a trace, and the average of all cells is designated with the 

thick, black line. Cells were exposed to oscillatory conditions of 2 mM EGTA or 1.5 mM 

CaCl2 with frequencies of (a) 16.7 mHz, (b) 2.78 mHz, or (c) 1.67 mHz. Two controls 

were obtained for these experiments were the environment was held constant for the cells 

but it was mechanically switched at a frequency of 2.78 mHz. These constant 

environmental conditions were (d) 2 mM EGTA and (e) HBSS with Ca2+ and Mg2+. Cell 

traces are normalized to the first time point acquired and visualized for 10 minutes total. 

For easier visualization, the range of fluorescence is reduced in f-j.  

7.3.4 smFISH Response to Oscillatory Stimulation 

Following dynamic stimulation with a robust delivery of Ca2+, cells were incubated for 1 

hour and subsequently fixed and hybridized with two smFISH probes: FOS and HIF1α 

with a protocol originally developed by Loice Chingozha in the Lu Lab. Cells were 

imaged using a 100x objective on a Spinning Disk Confocal and individual probes were 

seen as bright spots within the cells (Figure 7-4). From initial glance at the images 

collected, it was apparent that different oscillatory frequencies elicited different 

transcriptional responses. For instance, cells stimulated at a frequency of 2.78 showed 
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numerous, bright spots representing an increase in mRNA transcript number compared to 

those stimulated with 16.7 mHz stimulation (Figure 7-4). 

 

Figure 7-4: smFISH Images Collected Post Stimulation with Different Oscillatory Ca2+ 

Stimulation. 

 

 The number of FOS and HIF1α mRNA transcripts was quantified in each 

identified cell and compiled across reporter lines to demonstrate the dependence of 

transcript number on treatment condition (Figure 7-5). This analysis on single-cells was 

completed after they had been exposed to EGTA and Ca2+ in an oscillatory pattern with 

designated period or were confined to the same environmental condition of EGTA or 

HBSS with Ca2+ to control for experimental conditions. It is clear from this analysis that 

both FOS and HIF1α transcription is upregulated upon stimulation with 6 minute periods 

of oscillation (2.78 mHz frequency) (Figure 7-5). The 1 minute (16.7 mHz) and 10 

minute (1.67 mHz) oscillatory conditions were surprisingly similar to the EGTA and 

HBSS with Ca2+ controls although the range of responses in the 10 minute stimulation 

was larger than others for the FOS condition (Figure 7-5). It is also surprising that the 

EGTA control elicited some of the higher HIF1α mRNA counts when compared to 

treatment conditions. From this visualization, we again highlight how much information 
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can be lost with population averaged data and demonstrate the wide range of responses 

capable when single-cells are exposed to oscillatory environmental conditions and 

subsequently probed for mRNA transcripts of interest using smFISH. We found that the 

frequency eliciting the highest response in mRNA transcript number for both probes was 

the 2.78 mHz condition. 

 
 

Figure 7-5: Results of smFISH Analysis Following Oscillatory Treatment with Ca2+ at 

Various Frequencies. 

Cells were analyzed for smFISH probes subsequent to treatment with EGTA/Ca2+ 

oscillations or control conditions with constant environment. Cells can be seen with the 

maximal transcriptional response upon 2.78 mHz input of Ca2+. 
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7.3.5 Clustering Time Course Data 

With a plethora of single-cell information, we sought to calculate the similarity between 

cells to see what phenotypes we observe and what subpopulations might emerge. We 

used hierarchical clustering to calculate the distance between cells based on the time 

course data. In other words, each time point was treated as a variable and cells were 

clustered based on how closely related their dynamic behavior is to others. We chose this 

approach to compare individual trajectories to compile distinct phenotypes. Using this 

approach, we pulled out a few distinct subpopulations representing (1) cells that exhibit 

higher than average H2O2 signaling through time (red dendrogram) and (2) cells with 

lower than average H2O2 concentration through time (blue dendrogram) (Figure 7-6 and 

Figure 7-7).  

 

Figure 7-6: Clustered EGTA/Ca2+ Treatment Conditions of HyPer-Cyto Response. 

Cells (rows of heat-map) were clustered using hierarchical clustering based on time 

(columns of heat-map) and highlighted different phenotypes within the population of 

cells. Cells can be seen with lower than average H2O2 concentration (blue dendrogram), 

or higher than average signaling (red dendrogram) through the course of the experiment. 

Cells were clustered based on the first 10 minutes of stimulation for all conditions: (a) 

16.7 mHz, (b) 2.78 mHz, and (c) 1.67 mHz stimulation. The corresponding 

transcriptional response was identified and added to the right of each clustergram, with 

the left column corresponding to FOS and the right column corresponding to HIF1. 

White values in the transcriptional heatmap correspond to cells that were not present for 

both signaling event and smFISH measurement. 
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 It was interesting to note that despite investigating two different transcript 

reporter lines and differences seen in time course data, there were the same dominant 

phenotypes present in the clustered population of cells for both the HyPer-cyto and 

HyPer-mito responses (Figure 7-6 and Figure 7-7). However, the distribution in number 

of cells in each cluster varied between the samples, most notably the high responders (red 

cluster) were higher in proportion in some treatment conditions of HyPer-cyto cells than 

the HyPer-mito data. This is at first counterintuitive as the HyPer-mito cells, in general, 

responded with higher H2O2 production than did the HyPer-cyto cells. But with 

standardization of each time point, cells are clustered based on the distance of their 

trajectory from the mean, indicating the HyPer-mito cells may have a population subset 

exhibiting much higher dynamics than in HyPer-cyto and potentially a smaller overall 

cluster size. This is supported by the evidence in Figure 7-7, where there are clear subsets 

of the population with large standardized values (deep red), and more of these cells are 

present in HyPer-mito analysis than in HyPer-cyto results. 
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Figure 7-7: Clustered EGTA/Ca2+ Treatment Conditions of HyPer-Mito Response. 

Cells (rows of heat-map) were clustered using hierarchical clustering based on time 

(columns of heat-map) and highlighted different phenotypes within the population of 

cells. Cells can be seen with lower than average H2O2 concentration (blue dendrogram), 

or higher than average signaling (red dendrogram) through the course of the experiment. 

Cells were clustered based on the first 10 minutes of stimulation for all conditions: (a) 

16.7 mHz, (b) 2.78 mHz, and (c) 1.67 mHz stimulation. The corresponding 

transcriptional response was identified and added to the right of each clustergram, with 

the left column corresponding to FOS and the right column corresponding to HIF1. 

White values in the transcriptional heatmap correspond to cells that were not present for 

both signaling event and smFISH measurement. 

 

 We subsequently calculated the response of cells 10 seconds post activation with 

the first wave of Ca2+ and compared these values with the designated cluster number 

(Figure 7-8). Although with such a wide range of responses it is difficult to see subtle 

differences, both cytoplasmic and mitochondrial H2O2 production appeared to be higher 

in the Top cluster, corresponding to sustained response cells (Figure 7-8). It is not 

surprising that the top responders had a higher H2O2 level at 10s post stimulation because 

this cluster appears to have a higher response throughout the duration of the experiment. 

Similarly, the bottom cluster cells behaved as expected with this metric, showing a lower 

level of H2O2 present post stimulation with Ca2+. This suggests the cells in the bottom 

cluster potentially do not have the same initial increase in H2O2 production as the top 

cluster. 
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Figure 7-8: 10 s Post Stimulation Response vs. Identified Cluster of Single-cells. 

The fluorescence of (a,c,e) HyPer-Myto and (b,d,f) HyPer-Cyto was calculated 10 s post 

stimulation with the first wave of Ca2+ for treatment conditions of (a,b) 1.67 mHz, (c,d) 

2.78 mHz, and (e,f) 16.7 mHz stimulation with EGTA/Ca2+. 
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 Finally, we combined the response of the different treatments into a single metric 

of the value of oxidized HyPer protein 10 seconds post activation with the first wave of 

Ca2+ to compare differences between the cytoplasmic and mitochondrial response. Again, 

heterogeneity is observable within the population of cells and a wide range of responses 

is obtained. However, when comparing the response post treatment between the 

cytoplasmic and mitochondrial localized protein, the mitochondrial protein is 

significantly more fluorescent than the cytoplasmic protein, suggesting mitochondrial 

H2O2 production is increased in response to Ca2+, at least initially and cytoplasmic H2O2 

production decreases immediately upon exposure to Ca2+ (Figure 7-9). 
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Figure 7-9: Compiled Results for HyPer-Cyto and HyPer-Mito Response to Ca2+ 

Stimulation. 

The oxidized fluorescence of HyPer was measured post stimulation for both HyPer-cyto 

and HyPer-mito cells. All treatment conditions were combined for the first response of 

cells to Ca2+ stimulation and compared across reporter lines. There is a significant 

increase in mitochondrial H2O2 post stimulation as compared to cytoplasmic H2O2. A 

two-tailed t test was performed in GraphPad PrismTM with the resulting p-value < 0.0001. 
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7.3.6 Correlation of Signaling with Transcriptional Response 

We further explored the response of T cells to Ca2+ stimulation of various frequencies by 

analyzing data from both signaling events and downstream transcriptional responses for 

individual cells. Using the clustering data from above, we compared the transcriptional 

response for FOS and HIF1 for cells in each cluster, For both HyPer-cyto and HyPer-

mito cells, we see a counterintuitive result that cells in the bottom phenotype cluster 

showed some of the highest FOS and HIF1α transcript numbers, suggesting the peak 

height 10 seconds post transcription is not necessarily determinant of transcriptional 

response (Figure 7-10 and Figure 7-11). In other words, cells with lower values of H2O2 

response to Ca2+ still appear to be activated by the treatment to mount a transcriptional 

response. Overall, cells exposed to 2.78 mHz stimulation have higher numbers of target 

mRNA for both FOS and HIF1α (Figure 7-10 and Figure 7-11). 
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Figure 7-10: Analysis of FOS mRNA Transcript Number Compared to Cluster Number. 

Cells were clustered based on time course data of cytoplasmic H2O2 production into one 

of two clusters and the resulting smFISH probe transcript number was compared to the 

identified cluster. FOS smFISH probes were imaged for: (a,c,e) HyPer-Myto and (b,d,f) 

HyPer-Cyto for treatment conditions of (a,b) 1.67 mHz, (c,d) 2.78 mHz, and (e,f) 16.7 

mHz stimulation with EGTA/Ca2+. 
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Figure 7-11: Analysis of HIF1α mRNA Transcript Number Compared to Cluster 

Number. 

Cells were clustered based on time course data of cytoplasmic H2O2 production into one 

of two clusters and the resulting smFISH probe transcript number was compared to the 

identified cluster. HIF1α smFISH probes were imaged for: (a,c,e) HyPer-Myto and (b,d,f) 

HyPer-Cyto for treatment conditions of (a,b) 1.67 mHz, (c,d) 2.78 mHz, and (e,f) 16.7 

mHz stimulation with EGTA/Ca2+. 
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 We investigated the correlation between different metrics mentioned, such as the 

10 second post stimulation level and transcript count, but found that the most highly 

correlated relationship was between FOS and HIF1α levels (Figure 7-12 and Figure 

7-13). Cells with high levels of FOS were likely to also have high levels of HIF1α 

suggesting either cells often express these two genes together, or some cells within the 

population are more likely to mount higher transcirptional responses for all genes 

activated. 

 

 
Figure 7-12: Linear Correlation Between mRNA Probes in HyPer-Cyto Transfected 

Cells. 

The mRNA count for FOS and HIF1α was compared for individual cells and showed a 

strong linear correlation between transcript numbers in HyPer-Cyto stably transfected 

cells. Each graph is depicted with the resulting linear relationship and R2 values for (a) 

16.7 mHz, (b) 2.78 mHz, and (c) 1.67 mHz condition cells. 
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Figure 7-13: Linear Correlation Between mRNA Probes in HyPer-Mito Transfected 

Cells. 

The mRNA count for FOS and HIF1α similarly showed a strong linear correlation 

between transcript copy numbers in HyPer-Mito cells. Each graph is depicted with the 

resulting linear relationship and R2 values for (a) 16.7 mHz, (b) 2.78 mHz, and (c) 1.67 

mHz condition cells. 

 

7.4 Discussion 

Throughout this work we have hypothesized that we can better characterize the 

connections and interactions between Ca2+ and H2O2 during T cell activation using the 

innovative application of microfluidics and single-cell analysis with recombinant reporter 

lines. We have shown in earlier chapters that Ca2+ responds with oscillatory behavior 

upon stimulation with H2O2, and it appears to be most entrained with a driving frequency 

of 2.78 mHz, corresponding to a period of 6 minutes. In this work, we interchanged the 

input and output of our system such that cells were treated with thapsigargin and driven 

with EGTA and CaCl2 solutions to elicit robust, well defined spikes of Ca2+ for a wide 

range of frequencies. H2O2 production was imaged through time with the use of our 

stably transfected HyPer-mito and HyPer-cyto cells, corresponding to mitochondrial and 

cytoplasmic localized versions of the recombinant protein, HyPer. We further utilized our 

microfluidic system to not only image individual cells through time, but also fix and 
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hybridize cells on chip with smFISH probes to measure downstream transcriptional 

factors.  

 We have seen previously that Ca2+ signaling is highly heterogeneous and cells 

within a population vary in frequency, amplitude, and phase shift. We have introduced a 

new investigational approach to more intelligently probe the system; however fully 

decoding the whole realm of Ca2+ signals is not currently possible. We sought to reduce 

the number of variations cells experienced such that we could tightly control Ca2+ 

signaling to make conclusions about H2O2 production in response to known Ca2+ 

behavior. We were able to characterize the response of Jurkat T cells to EGTA/Ca2+ 

stimulation and found a robust, homogenous population of cells responding at the driving 

frequency. In fact, almost every cell responded with a single, dominant frequency of 

signaling that reflected the driving frequency. With this result, we were justified with 

estimating the population response to Ca2+ and assuming all cells were responding 

similarly with approximately identical Ca2+ signaling.  

 One of the open questions in literature surrounds the effect of Ca2+ on H2O2 

production, with many reports suggesting different results in the presence of different 

inhibitors of oxidative phosphorylation. To further investigate this, we visualized the 

response of H2O2 reporters, HyPer-cyto and HyPer-mito, to Ca2+ oscillations of various 

frequencies, using the same experimental set up as in previous chapters. Such a view of T 

cell redox signaling in response to Ca2+ perturbations has not been obtained before and 

signifies a distinct improvement for collecting signaling kinetic information. Time course 

analysis revealed distinct differences between H2O2 production in the mitochondria and 

cytoplasm. For instance, cytoplasmic H2O2 levels were seen to decrease in response to 
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Ca2+ exposure, and although subtle, it was reproducible across many cells and 

experimental conditions. This suggests there is some kind of inhibitory role of Ca2+ in 

cytoplasmic H2O2. This is also in line with previous reports suggesting H2O2 does not 

increase upon exposure to Ca2+ unless in the presence of additional inhibitors [320]. 

However, to our knowledge, such a robust decrease in H2O2 has not been reported in 

literature. This decrease suggests the potential for Ca2+ to actively downregulate H2O2 

levels in the cytoplasm upon exposure, possibly through protein modulation of the redox 

pathways involved with H2O2 metabolism in the cytoplasm, such as activation of the 

glutathione peroxidase (GPx) and GSH H2O2 elimination system. Such a rapid increase in 

the reducing capacity of the cytoplasm may functionally serve to help harbor the 

deleterious effects of ROS production during T cell activation.  

 In contrast to the cytoplasmic results, the mitochondrial H2O2 response exhibited 

a sharp increase in H2O2 levels upon exposure to Ca2+, and this was also repeated 

between experiments and treatment conditions (Figure 7-3). This result suggests that Ca2+ 

signaling differentially affects subcellular localized H2O2, suggesting different 

mechanisms of action or different modifications of the redox systems in place. Ca2+ 

signaling in T cells is one of the steps towards activation, ultimately leading to the 

upregulation of multiple transcriptional factors, increased proliferation, and cytokine 

release. These processes all require energy and mitochondria proceed through an 

oxidative burst upon activation, potentially as the result of an increase in oxidative 

phosphorylation. However, it has never been shown with this detail of localization and 

timing that H2O2 increases in response to Ca2+ signaling, thus providing novel support to 

this hypothesis. 
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 One of the hypotheses of this work was that the Ca2+ signaling could direct 

downstream transcriptional responses in a frequency dependent manner. To further assess 

this basis for derivation of our experimental protocol, we measured the transcriptional 

response of FOS, a protein dependent on Ca2+ signaling for complete upregulation during 

T cell activation, and HIF1, hypoxia inducible factor protein, by fixing and hybridizing 

cells in our microfluidic device after stimulation. These cells were first exposed to the 

oscillatory conditions explained above, and subsequently imaged for mRNA count of 

smFISH probes of interest. Individual cells were captured for both signaling events and 

downstream transcriptional activity based on their presence in the cell trap for both 

procedures. It was evident from the smFISH data that the 6 minute period of oscillation, 

corresponding to a frequency of 2.78 mHz, for Ca2+ signaling elicited the largest response 

in mRNA count. Not only does this provide useful data to compare to signaling 

information, but it also reaffirms the conclusions found in Chapter 6: we reported the 

finding that Ca2+ oscillation seems to be naturally entrained to a frequency of H2O2 

signaling around 6 minutes, and concluded this is important for downstream events. Here 

we have shown this is in fact the case, and cells appear to respond most robustly to this 

stimulation condition, highlighting not only the necessity to visualize Ca2+ dynamics in 

the frequency domain, but also the utility of this experimental approach for providing 

insight into the complex signaling networks to define frequencies of interest and 

transcriptional ramifications of these signaling patterns. 

 Furthermore, we explored ways to classify cells into different signaling 

subpopulations and determine any differences between clusters of downstream 

transcription. We found three distinct clusters of cells, corresponding to two major 
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phenotypes of signaling patterns: (1) top cells with higher H2O2 signaling through time 

and (2) bottom cells with lower than average H2O2 signaling for the experiment duration. 

Among these groups, we observed differences in the downstream transcription, with the 

interesting finding that the cells with decreasing H2O2 through time appear to be some of 

the highest transcriptional responders, highlighting the necessity to further characterize 

these single-cell traces with additional metrics to find correlations between H2O2 

response and downstream transcriptional factors. The best correlation we observed was a 

linear relationship between FOS and HIF1 transcript levels within a single-cell. It was 

apparent that cells were likely to express similar levels of mRNA counts and this 

observation may be described with a few different conjectures. First, there is potential for 

cells to couple these two genes for transcription upon T cell activation to again help with 

the cellular response to increased energy demands. Another possible explanation is that 

cells are more likely to be primed to express genes at higher levels overall when 

compared to other cells. As smFISH is an endpoint assay with inability to collect single-

cell information about initial basal transcript levels, we are unaware if these cells were 

naturally expressing higher levels of both at the initial time point and stimulation only 

exacerbated this predisposition. Potential future directions to test this hypothesis include 

better characterization of the initial population of cells, i.e. before any stimulation, to 

determine the range of mRNA transcript counts. Although this measurement is obtained 

on a different set of Jurkat T cells than what is stimulated, it would provide additional 

evidence as to whether or not the population exhibits the same level of heterogeneity 

initially. Other future experiments could include monitoring an additional signaling 

molecule upstream of FOS or HIF1 in conjunction with H2O2 to more fully characterize 
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the upstream events of transcription. This may shed light on where the variability in 

downstream targets arises: whether it be in Ca2+, H2O2, or additional, currently 

unmeasured molecules. 

 In summary, in this chapter we have demonstrated the utility of this microfluidic 

system and experimental set up to extract key information regarding the interplay 

between Ca2+ and H2O2 upon T cell activation as well as the frequency dependence of 

downstream transcriptional activity on Ca2+ signaling at the single-cell level. Future work 

can be devoted to defining additional metrics to describe the kinetics of H2O2 signaling to 

find any connection between differential transcriptional responses to these metrics. 
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CHAPTER 8  CONCLUSIONS AND FUTURE DIRECTIONS  

8.1 Conclusions 

Throughout this dissertation, we have investigated intracellular signaling in response to 

various environmental perturbations with single-cell resolution. This work has been made 

possible through an innovative microfluidic and computational approach, expanding on 

previously developed techniques to develop a platform for the frequency response 

analysis of suspension Jurkat T cell lymphocytes. We have expanded the realm of 

possible perturbations we apply to cells, attempting to decode characteristics of the 

frequency based Ca2+ signaling observed. Our approaches enabled a more systematic 

approach for probing Ca2+ signaling. We were also able to combine signaling studies with 

markers for downstream transcriptional response by hybridizing smFISH probes on chip 

with single-cell resolution. We have achieved a more complete view of T cell signaling 

than previous reports and introduce novel findings in the frequency domain of Ca2+ and 

H2O2 signaling networks. 

 

Single-Cell Analysis of H2O2 Production 

Our first studies aimed at characterizing heterogeneity within a population of cells to 

ROS stimulation by antimycin A with single-cell resolution. We developed protocols for 

stably transfecting Jurkat T cells with recently produced recombinant proteins susceptible 

to reversible oxidation by H2O2 [130-132, 340, 341]. These proteins, HyPer-cyto and 

HyPer-mito, are intracellularly localized within the cytoplasm or mitochondria, 

respectively, and report spatiotemporal H2O2 levels in response to perturbation. We found 
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that populations of cells responded as expected to varying levels of antimycin A, with 

more cells reporting higher levels of H2O2 as antimycin A concentration increased. Yet, 

within a population of cells, responses were variable at the single-cell level and there 

were some nonresponsive cells in both experiments. This observable heterogeneity 

highlighted the necessity to achieve single-cell resolution to better understand signaling 

dynamics in complex regulatory networks. Through the use of HyPer, we overcame many 

current technical limitations regarding ROS measurement [342], and this enabled us to 

visualize population heterogeneity as well as H2O2 dynamics upon stimulation. Our 

experimental platform can be extended to perturb H2O2 production with any soluble cue 

and provides an advance in better understanding the spatiotemporal ramifications of 

redox altering stimulation. 

 

Computational Tools for Modeling T cell Ca2+ Kinetics 

To better understand T cell Ca2+ kinetics in response to T cell activation, we also further 

developed a computational model of T cell activation. This model built upon previous 

literature to incorporate kinetics that orchestrate Ca2+ signaling in response to TCR 

ligation. We successfully reproduced experimental data in silico and perturbed this 

system to recreate in vivo T cell changes between young and old, senescing, CD8+ T 

cells. Throughout this process we used the computational model to test predictions of 

molecular mechanisms by which changes in kinetics occur. The resulting system 

highlighted the potential for STIM1 to be oxidized during aging, and this was 

experimentally validated, providing a target for novel redox modification responsible for 

Ca2+ kinetics in older T cells, potentially underscoring differences in T cell effector 
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function and ultimately a target for reversing age related decline in immune system 

function. Although only the population average of cells was assayed for model fitting, 

this finding may also be involved with orchestrating Ca2+ oscillations in single-cells. 

STIM1 is located on the ER membrane and known to translocate from diffuse 

organization to distinct puncta in close proximity to the plasma membrane upon 

activation by ER Ca2+ depletion. STIM1, upon translocation, is in close proximity to 

ORAI1 on the plasma membrane and able to elicit CRAC channel opening, flooding the 

cytoplasm with Ca2+ ions from extracellular space as part of the SOCE mechanism [343, 

344]. As STIM1 has roles in sensing depleted ER Ca2+ and subsequent orchestration of 

opening CRAC channels, this protein may also play a part in driving the oscillation at 

which Ca2+ signaling occurs in the cytoplasm. With our demonstrated redox regulation of 

this protein, it also suggests that throughout aging, T cells may respond with differential 

oscillations compared to the immune system of younger individuals.  

 

Microfluidic and Analysis Tools for Frequency Based Single-Cell Stimulation 

We next sought to exploit Ca2+ oscillations by investigating signaling kinetics with a 

frequency response analysis approach, originally developed in control engineering and 

shown to be useful for analyzing small biological networks [115, 117]. Our application of 

the cross-talk between Ca2+ and ROS during T cell activation represents a more complex 

mammalian system than has been previously studied. We first developed the microfluidic 

techniques necessary for oscillatory stimulation of suspension cells and utilized two 

devices in this thesis: the first device was capable of robustly delivering oscillatory 

stimulation with diffusion of the step profile as it traversed the device and the second 
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utilized a two-layer approach for fast fluid switching with top down delivery, providing 

the same stimulation to all cells regardless of device position. We chose the latter, two-

layer device, to eliminate variation in input signal and reduce underlying factors that 

could contribute to heterogeneity. Despite controlling for a uniform stimulation with 

oscillatory H2O2, we observed a wide realm of potential Ca2+ responses with some being 

entrained to the input frequency and others demonstrating other phenotypes. With 

hundreds of single-cell traces, we developed a more automatic pipeline for analysis of 

single-cells and used spectral analysis to extract key features of the frequency response, 

such as dominant frequencies present in the signal as well as the gain and phase for each 

input frequency.  This suite of analysis scripts represents a novel and complete approach 

for viewing individual T cell traces with combining previously developed spectral 

analysis techniques and microfluidic principles [22, 102, 220, 241]. The platform was 

built with applicability to future and diverse studies in mind; different dynamic 

stimulation conditions can be easily programmed and applied for single-cell analysis, 

such as alteration of duty cycle or frequencies assayed. 

 

Ca2+ Responds Differentially to Dynamic H2O2 Stimulation 

We were able to sample multiple frequencies with this modularized device and combine 

information into Bode plots, representing the filter characteristics of the system. Finally, 

we used optimization algorithms to fit a second order transfer function to the data, 

finding a natural frequency of 2.78 mHz for the system, corresponding to a period of 6 

minutes. In addition to the transfer function fit to the entire population, subsets of the 

population were used to fit the same parameters of the transfer function to determine 
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potential differences between these subsets. We found for the top 25% of the population, 

as calculated based on the gain response for each frequency, our best fit transfer function 

parameter set shows a more damped system as compared to the population fit. The 

bottom 25% of cell values was fit to a model that had a similar damping coefficient to the 

population fit, but the system gain was much lower than the other fits. Together, these 

models suggest there could be differences between cells in their filtering behavior, with 

some cells having a less variable response to stimulation with different frequencies (more 

damped system). One possible explanation for these differences may arise in oxidative 

modifications of proteins involved with Ca2+ transport, such as STIM1, which we found 

to be redox sensitive in aging cells. Better characterization of STIM1 oxidation states at 

the single-cell level within a population of cells may provide evidence to support this 

hypothesis. Other variations in T cells that would account for these different responses 

include those molecules involved in Ca2+ sensing, such as PLC-[75, 76], PKC [77], 

CaMKII [345], and the mitochondrial Ca2+ uniporter [78]. Differences in post 

translational modification of these proteins may alter the binding kinetics of Ca2+ to the 

sensing portion of the molecule, altering the on-off kinetics that are thought to be 

responsible for decoding frequency based stimulation. 

 

Frequency Response of Ca2+ to H2O2 

Our computational model of T cell activation was also expanded to incorporate 

interactions between Ca2+ and H2O2 into a large mechanistic model of seven nonlinear 

ODEs. With the application of an oscillatory input to the system in silico, we found 

interesting observations of differential steady state behavior based on input frequency and 
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amplitude, demonstrating the potential mechanisms by which Ca2+ can decode such a 

diverse array of responses with a universal signaling ion. There are some recent reports 

that also investigate Ca2+ dynamics in the frequency domain, many of which find some 

kind of band pass filter behavior [324], which aligns with our response: we see the 2.78 

mHz frequency most robustly transmitted from input to output signal with attenuation on 

either side of this frequency. Interestingly, other biological signaling networks also 

behave as band pass filters in nature, suggesting this is a common network phenomenon 

[115, 117]. Evolutionarily, it makes intuitive sense that signaling systems would respond 

only to very specific input signals to spare energy for only specific signaling events, thus 

providing a robust, efficient response to environmental stimulation.  

 Other reports demonstrate the functional response of Ca2+ signaling, as reported 

by transcripts of NFAT and NFB, and find that the frequency of Ca2+ signaling elicits 

differential expression [22, 70]. Although these studies utilized frequency stimulation 

with varying duty cycle (0.028-0.5), our results lie within the range of reported functional 

responses, corroborating our conclusion for the natural frequency of Ca2+ signaling 

observed with H2O2 stimulation at a constant duty cycle of 0.5. It is interesting to lie 

within the reported range despite differences in input signal shape, and it would be 

interesting to more completely characterize this response using our system with a range 

of duty cycles sampled.  As the downstream decoding can be accomplished based on 

translocation of response elements such as NFAT or NFB, better understanding of 

dominant frequencies for each transcription factor may enable a more appropriate 

mechanistic model to be developed for these dynamics. 
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 We report the first study of Ca2+ oscillation in single T cells responding to 

approximately sinusoidal input signals of H2O2 of various frequencies and find novel 

information previously hidden in the frequency domain. Although our network was much 

larger with more unknown connections than previous applications, we were able to derive 

the natural frequency of our data and make conclusions about potential transfer function 

fits as well as explore dynamics with our complex computational model. 

  

Characterizing Local H2O2 Response to Ca2+ 

Although there are known connections between Ca2+ and H2O2, literature has incomplete 

molecular evidence for this interplay, and specifically the response of H2O2 to Ca2+ 

signaling [90, 197]. Advances in this field are most likely limited by imaging techniques, 

as ROS have previously been difficult to study with much debate in literature about 

proper terminology and reached conclusions based on available, irreversible and 

nonspecific dyes [342]. To overcome this challenge, we use the stably transfected HyPer 

lines developed in this thesis to monitor H2O2 production in response to Ca2+ signaling in 

Jurkat T cells and find distinct differences dependent on subcellular localization of the 

protein. Our novel findings demonstrate differences between cytoplasmic and 

mitochondrial H2O2 production, with implications for differentially affected redox 

regulatory mechanisms between compartments. 

 

Transcriptional Response to Oscillatory Ca2+ Stimulation 

Finally, we again utilized our two-layer microfluidic device to perform on chip smFISH 

analysis of downstream transcription factors of interest in T cell activation: FOS and 
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HIf1. Our novel findings include the maximal transcriptional response found at 2.78 

mHz, corresponding to our proposed natural frequency above. It is not possible to remove 

specific cells from the device for off chip single-cell gene expression analysis, so we 

modified an existing smFISH protocol [346] to be used on the device for a more 

complete view of T cell activation: spanning multiple time scales and different biological 

processes.  

 Overall, through the combination of microfluidic and computational approaches, 

we more accurately depict the signaling processes in T cell activation by probing the 

system with a frequency response analysis approach. Further, these approaches are 

applicable to investigate other biological questions and provide unique insight that cannot 

be garnered using traditional experimental techniques. 

 

8.2 Future Research Directions 

8.2.1 Development of Computational Tools for Analyzing Single-Cells 

In this work we present the continuation of two computational models of T cell 

activation. The first was used for demonstrating differences between young and old T 

cells while the second incorporated added complexity with ROS interactions of Ca2+ 

kinetics. While these models provided useful results here, they were ultimately created 

based on population averages of cells and could be updated in future work to incorporate 

more of the observed population heterogeneity. For instance, finding different parameter 

sets responsible for different kinetic traces would be an interesting exploration of 

underlying mechanisms that give rise to the plethora of possible responses. Further, this 

approach will give an unprecedented view into diseased states, potentially finding 
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parameter sets responsible for driving disease progression and prognosis. Such a view of 

population heterogeneity will cultivate hypotheses in a more timely fashion than running 

separate experiments; it is often faster to run in silico experiments for model-driven 

hypotheses that can be experimentally tested. 

 With an increase in understanding of heterogeneity, it is possible to understand 

implications of disease treatment based on a personalized assessment of patients’ 

population of cells. With this model toolkit, it may be possible to perform in silico drug 

screens on patient data with the ultimate goal of quickly and confidently ascertaining the 

most effective treatment option.  

8.2.2 Frequency Response Analysis of ROS/Ca2+ Signaling 

Biological systems have feedback control, robustness, and sensitivity built into network 

complexity. The ability to reduce this system down to dominant feedback controls is 

important for advancing understanding of many network topologies. As an investigative 

approach, we offer a proof of concept that the use of frequency response analysis can 

model the response of Ca2+ signaling to H2O2 input without any understanding of 

molecular basis of the system. Typical approaches for this analysis rely on white noise 

input signals that are composed of many frequencies. The resulting output signal is 

analyzed and gain can be calculated for a single-cell across the frequency spectrum. 

However, without detailed characterization of possible Ca2+ signals, it would not be 

possible to determine if the resulting signal had different frequencies present due to input 

signal or natural processes within the cell. To overcome this limitation, we first probed 

only a single frequency for each cell and combined data between experiments to compose 

the Bode plot representation. The development of better clustering techniques or metrics 
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to compare cells enables a more complete understanding of potential single-cell 

responses and could be used for comparison with more advanced stimulatory conditions. 

An experimental approach to more systematically probe single-cells with multiple 

frequencies would supply additional information into the hypothesis that different cells 

exhibit different filtering capabilities, and would also allow us to determine parameters of 

interest for these transfer function systems. 

 In this work, we also investigated large mechanistic models using ODE equations 

to describe the ROS/Ca2+ kinetics during T cell activation. We were able to recreate 

experimental data in the time domain and the response of cells to oscillatory stimulation, 

however our system was complex with many nonlinearities. Future work should 

concentrate on reducing the model into different subnetworks to determine how each 

network contributes to this instability, with the goal of finding stable subnetworks that 

can be probed individually and combined for a more complete understanding of the 

underlying topology. It would also give more insight into the dominant feedback 

regulation and thus highlight novel potential targets for therapeutic intervention of 

diseased states.  

8.2.3 Characterizing H2O2 Response to Ca2+ 

H2O2 production was measured in response to Ca2+ signaling using a thapsigargin 

pretreatment condition to chemically clamp the cells. While this pretreatment is not 

known to alter the redox status of the cell, it would be interesting to activate T cells 

without thapsigargin and monitor the resulting H2O2 response using this well 

characterized experimental approach to image HyPer transfected cells. However, there 

are a multitude of potential Ca2+ responses that could be occurring and without proper 
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Ca2+ probes that can be used for simultaneous imaging with HyPer, it is difficult to 

conclude what differences are based on cell specific Ca2+ signals and what responses are 

cell-to-cell variability. Proper characterization of additional Ca2+ dyes may make it 

possible to simultaneously monitor both signaling molecules through time and help 

alleviate this limitation. 

 Other controls to assess include providing cells with different amplitude Ca2+ 

signals to determine what information amplitude encodes for H2O2 signaling and 

downstream transcriptional response. As signals in the frequency domain contain both 

frequency and amplitude, finding a way to systematically sample all possible modes of 

carrying information in these signals provides an invaluable tool for better characterizing 

these complex signaling molecules. 

 To determine potential molecular mechanisms behind this differential response 

between cytoplasmic and mitochondrial H2O2 production, it would be interesting to apply 

different inhibitors to the system and again collect the H2O2 dynamic response with live 

cell fluorescent microscopy. For instance, applying an inhibitor to a reducing agent of 

H2O2 may result in no difference to H2O2 dynamics upon Ca2+ signaling, providing the 

mechanistic details for localized Ca2+ modulation of H2O2 dynamics. These experiments 

would be straightforward to complete on the aforementioned microfluidic set up. 

8.2.4 Transcriptional Response to Oscillatory Stimulation 

To garner as much information as possible, and on as many timescales as possible, we 

fixed cells post stimulation with oscillatory Ca2+ signals and hybridized smFISH probes 

to count mRNA transcript numbers in single-cells and compare these results with 

upstream signaling events. We found low correlation between some of the computed 
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metrics and downstream transcript copy number; it is likely that this is due to the 

incorrect choice of signaling characterization metrics and more investigation is warranted 

to find additional measurements, such as area under the curve of H2O2 response, time to 

peak, or decay rate of the response to Ca2+. As single-cell time course data is a new area 

for research, we are still working to understand what portions of dynamic information 

provided by the cell are important versus background noise or natural variation. 

However, with this set up we can systematically test different metrics to the downstream 

transcriptional events to determine what metrics are useful in conveying important 

environmental information to the cells. 

Experimentally, we observed large heterogeneity between cells with their 

signaling responses despite approximately the same input signal, which may contain 

information that we have thus far ignored.  Future work in this area should focus to better 

cluster responses and extract key computed metrics for modeling important regulatory 

mechanisms responsible for downstream function. This widely applicable platform 

provides one of the most complete pictures of intracellular T cell signaling dynamics and 

downstream transcriptional events with single-cell resolution. Many experimental 

techniques are only capable of accomplishing one of these tasks, highlighting the 

importance of the work in this dissertation to lay the groundwork for future wide scale 

studies of cellular behavior. 
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APPENDIX A: DOCUMENTED CODE 

A.1. Device Characterization and Single-cell Identification 

A.1.1. Manual Identification  

%% Load Images to MATLAB 

  
if ~exist('NbImages', 'var') 

     
    NbImages = 305;                          %number of images 
    Im = cell(1,NbImages); 

  
    FNAMEFMT1 = 'frame%d.tif'; 

  
    for i=1:NbImages 
      Im{i} = imread(sprintf(FNAMEFMT1,i));          %Fluorescent 

images 
    end 

  
%     for i = 10:99                                  
%       Im{i} = imread(sprintf(FNAMEFMT2,i)); 
%     end 
%  
%     for i = 100:NbImages 
%       Im{i} = imread(sprintf(FNAMEFMT3,i)); 
%     end 

  
end 
% Crop Cells 

  

  
%Deleted--Makes it more automatic 
% Image = Im{NbImages}; 
% Image2 = Im{1}; 
%  
% [level EM] = graythresh(Image); 
% [level2 EM2] = graythresh(Image2); 
%  
% bw = im2bw(Image,level*1.25);      %%Convert to binary 
% bw = bwareaopen(bw,50);              %%Remove small objects 
%  
% bw2 = im2bw(Image2,level*3);      %%Convert to binary 
% bw2 = bwareaopen(bw2,50); 
%  
% Overlay = imfuse(bw,bw2); 

  
% Imgray = rgb2gray(Im{1}); 

  
%Create ROI 
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Ncell=21; 
for i=21%1:Ncell 
    i 
[X,Y,Icrop,rect] = imcrop(Im{1}); 
XX{i}=X; 
YY{i}=Y; 
IIcrop{i}=Icrop; 
Rect{i}=rect; 
end 

  
% Apply the ROI to the various pics 
for j=1:NbImages 
    ImageAnalyze = Im{j}; 
    Imgray = rgb2gray(ImageAnalyze); 
    for i=1:Ncell 
        Imcrop{j,i}=imcrop(Imgray,Rect{i}); 
    end 
end 

  

  
% Get Mean Fluorescent Intensity for each 

  
%define matrices 
C=zeros(Ncell-1,NbImages);   
CNorm = zeros(size(C)); 

  

  
% calculate intensity, subtract background and normalize 
for j=1:NbImages    %step through each picture 
    for i=Ncell     %for each picture, the last box drawn is for the 

background.  
        A=mean(Imcrop{j,i}); %average the rows 
        B=mean(A,2);         %average the columns (order?) 
        CBack=B;    %Mean background intensity 
    end 
    for i=1:Ncell-1 %ignore the last box, which is the background 
        A=mean(Imcrop{j,i},1); 
        B=mean(A,2); 
        C(i,j)=B-CBack; %subtract the background from each cell 
        CNorm(i, j)=C(i,j)/C(i, 1); %normalize the cell intensity to 

the first time point 
    end 
end 

  
figure(1) 
imagesc(C) 

  
% %Plot average of all cells through time 
% Cavg = zeros(1,NbImages); 
% for j = 1:NbImages 
%     Cavg(j)=mean(CNorm(:,j)); 
% end 
%  
% figure (2) 
% plot(Cavg) 
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A.2. Frequency Response Analysis Pipeline 

A.2.1. Step 1: Single-cell Identification 

Single-cells are identified using RDFC according to a paper from the Lu Lab that is 

currently in prep: 

Charles L. Zhao, Ariel S. Kniss, Thomas J. Levario, Daniel F. Puleri, Shinsuke Niwa, 

Kang Shen, Hang Lu. Rapid and Simple Quantitative Phenotyping of Fluorescent 

Reporters Enabled by Relative Difference Filtering and Clustering. In Prep (2016). 

A.2.2. Step 2: Collect Time Lapse Data 

%Ariel S. Kniss 
%Last Edited: January 2015 

  
% %http://www.mathworks.com/help/images/functionlist.html 

  
%Indicate where the L image is from CZ code 
%20150521_25uM_6Min_L.mat, originally saved from 

20150521_25uM_6Min_TRUNC_CZMethod_20150522T172431 

  
%Indicate what filename you would like the save the results as: 
Filename = ['20150521_25uM_6Min_181_CZMethod_',datestr(now,30),'.mat'];  

  
% if ~exist('NbImages', 'var') 
%      
    NbImages = 211;                          %number of images 
    Im = cell(1,NbImages); 
    pixelarearange = [30,100];              %Range of pixel area 

values, used below with bwareafilt 
    FirstFrame = 31; 

     
    FNAMEFMT1 = '20150521_25h2o2_trial1t00%dxy1c1.tif'; %Change these 

to reflect tif images from nd export 
    FNAMEFMT2 = '20150521_25h2o2_trial1t0%dxy1c1.tif'; 
    FNAMEFMT3 = '20150521_25h2o2_trial1t%dxy1c1.tif'; 

     
    for i=1:9 
      Im{i} = imread(sprintf(FNAMEFMT1,i));          %Fluorescent 

images 
    end 

     
    for i = 10:99 
      Im{i} = imread(sprintf(FNAMEFMT2,i)); 
    end 
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    for i = 100:NbImages 
      Im{i} = imread(sprintf(FNAMEFMT3,i)); 
    end 

     
% end 
%          
% %Do not change any variables below this line 

**************************** 
%  
% figure(1) 
% subplot(2,3,1) 
% imshow(Im{1}) 
% title('Grayscale Image') 
%  
% %first adjust contrast to help pick out cells in binary image 
% Imadjust = imadjust(Im{1}); 
% Imadjustlast = imadjust(Im{NbImages}); 
%  
% ImadjustComb = imadd(Imadjust,Imadjustlast); 
%  
% subplot(2,3,2) 
% imshow(Imadjust) 
% title('Grayscale Image Adjusted') 
%  
% [level EM1] = graythresh(ImadjustComb);     %get the threshold from 

graythresh function 
% bw = im2bw(ImadjustComb,level);             %Convert to binary 
% bwclearborder = imclearborder(bw);      %clear any objects on the 

border of image 
% bwclear = bwareafilt(bwclearborder,pixelarearange);            

%Remove spots not in pixelrange 
%  
% subplot(2,3,3) 
% imshow(bw) 
% title('Raw Binary Image') 
%  
% subplot(2,3,4) 
% imshow(bwclearborder) 
% title('Binary Image with Clear Borders') 
%  
% subplot(2,3,5) 
% imshow(bwclear) 
% title('Binary Image with Sizes Filtered') 
%  
%  
%  
% [L, num] = bwlabel(bwclear);               %Label the connected 

components, num returns the number of connected components 

  
for ii=1:NbImages 

     
    stats = 

regionprops(L,Im{ii},'MeanIntensity','MinIntensity','MaxIntensity','Cen

troid','BoundingBox','Extrema','Area'); 
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    MeanIntensity(:,ii) = extractfield(stats,'MeanIntensity')';   %This 

takes the values from the structure and makes a vector 
    BoundingBox(:,ii) = extractfield(stats,'BoundingBox')'; 
    MinIntensity(:,ii) = extractfield(stats,'MinIntensity'); 
    MaxIntensity(:,ii) = extractfield(stats,'MaxIntensity'); 
    Centroid(:,ii) = extractfield(stats,'Centroid'); 
    Extrema(:,ii) = extractfield(stats,'Extrema'); 
    Area(:,ii) = extractfield(stats,'Area'); 

     
    for i = 0:num-1 
        j = i*4+1;                          %Bounding box has 4 values 

for every object: 1. x coordinate 2. y coordinate 3. x width 4. y width 
        ycoord(i+1) = round(BoundingBox(j+1));   %Find the y value for 

all bounding boxes 
        xcoord(i+1) = round(BoundingBox(j));     %Find the x value for 

all bounding boxes 
        if xcoord(i+1) >= 3 && ycoord(i+1)>= 3 
            Back(i+1,ii) = mean(mean(Im{ii}(ycoord(i+1)-

2:ycoord(i+1),xcoord(i+1)-2:xcoord(i+1)))); %Take the average of pixel 

intensities from the top left, a 3x3 pixel square 
            BackSubMeanIntensity(i+1,ii) = MeanIntensity(i+1,ii) - 

Back(i+1,ii); 
        else 
            Back(i+1,ii) = mean(mean(Im{ii}(ycoord(i+1)-

1:ycoord(i+1),xcoord(i+1)-1:xcoord(i+1)))); %Take the average of pixel 

intensities from the top left, a 2x2 pixel square 
            BackSubMeanIntensity(i+1,ii) = MeanIntensity(i+1,ii) - 

Back(i+1,ii);                    %Perform final calculation where the 

mean cell intensity subtracts the little background box from it 
        end 

  
    end    

         

     
end 

  
%Now we want to find those cells that become negative, these will be 
%removed from the dataset 
NegativeCells = BackSubMeanIntensity < 0; 
RowsToDelete = []; 

  
for i = 1:num 
    if sum(NegativeCells(i,:)) > 0  
            RowsToDelete = [RowsToDelete i]; 
    else 
    end 
end 

  
NumRowsToDelete=length(RowsToDelete); 
BackSubMeanIntensityCorr = BackSubMeanIntensity; 
BackCorr = Back; 

  
for i = 1:NumRowsToDelete 

  
        RowNumber = RowsToDelete(i)-(i-1); 
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        BackSubMeanIntensityCorr(RowNumber,:)=[]; 
        BackCorr(RowNumber,:)=[]; 

  
end 

  
BackSubMeanIntensityCorrTrunc = 

BackSubMeanIntensityCorr(:,FirstFrame:end); 

  
coord = [ycoord' xcoord']; 

  

  

  
save(Filename) 

A.2.3. Step 3: Normalize Traces 

clear all; close all; clc 

  
File = '20150521_25uM_6Min_181_CZMethod_20150805T114051'; %Insert file 

name, but do not include '.mat' 

  
FileToLoad = [File,'.mat']; %Identify the variables you want to bring 

in 

  
Matobj = matfile(FileToLoad);   %Load in specific file 
BackSubMeanIntensityCorrTrunc = Matobj.BackSubMeanIntensityCorrTrunc;     

%Only need one variable here 

  
%Labeled with period listed followed by date BackSubMeanIntensityCorr 

was 
%created and finally, the date in which the file was created 
OutputFilename = [File,'_',datestr(now,30),'.txt'];  
SaveFilename = [File,'_',datestr(now,30),'.mat']; 

  
ExpLength = 1080; %Length of the experiment in s 
Fs = 6;     %SamplingRate 

  

  
%Should not need to edit below line 
%*********************************** 

  

  
Time = 0:Fs:ExpLength;  %Create your time vector 

  

  
cellnumber = size(BackSubMeanIntensityCorrTrunc,1); 
length = size(BackSubMeanIntensityCorrTrunc,2);  
Cminmaxeachnorm2 = zeros(cellnumber + 1,length); %+1 to make room for 

the average!! 

  
for i = 1:cellnumber 
   M = BackSubMeanIntensityCorrTrunc(i,1:length); 
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   Mnorm = minmaxnorm(M); 
   Cminmaxeachnorm2(i,:) = (Mnorm); 
end 

  
for i = 1:length 
    Cminmaxeachnorm2(cellnumber+1,i) = 

mean(Cminmaxeachnorm2(1:cellnumber,i)); 
end 

  
CwTime = [Time' Cminmaxeachnorm2']; 

  
dlmwrite(OutputFilename,CwTime,'\t'); 

  
save(SaveFilename) 

  
% %function to accompany this file 
% function Mnorm = minmaxnorm(M) 
% a = min(min(M)); 
% b = max(max(M)); 
% Mnorm = (M-a)/(b-a); 

A.2.4. Step 4: Spectral Analysis Using Modified GUI 

GUI was used from [241] was used with the following modifications: 

timeError = 0.25; 

lowPeriod = 1.0; 

autoLevel = 0.75; 

pow.increment = 1; 

 
%**************************************Added by AK 
wordlength = size(pow.file.target,2); 
newlength = wordlength - 4;  %Take out the last 4 characers; these 

specify the .dat 

  
Filename = 

[pow.file.target(1:newlength),'_SA_',datestr(now,30),'.mat']; 

  
%******************************************************* 

%********************************************Added by AK 

  
NumberCells = pow.noCells; 
HistData = []; 

  
%************************************************* 

%***************************************Added by AK 

   
  HistData = [HistData; pow.peaks]; 

   
%************************************************* 
%***************************************Added by AK 
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  % Data was originally stored with three columns 
  % Frequency PSDheight RelativePower(in %) 
  % Now they are combined for all cells, so take each column and save 

as 
  % separate variable 
  HistFreqVal = HistData(:,1); 
  HistPSDVal = HistData(:,2); 
  HistRelPower = HistData(:,3); 

  
%************************************************* 
save(Filename) 

A.2.5. Step 5: Combine Gain and Phase Calculations 

%Ariel S. Kniss 
%Last Edited: January 2015 

  
clear all; close all; clc 

  
%Importing files in from the Spectral Analysis .dat files importfile.m 
%function needs to be in same folder 
%The imported files were creating using SpectralAnalysis.m GUI 

  
ImportFile = 

'20150521_25uM_6Min_181_CZMethod_20150805T114051_20150805T114147.spectr

um.dat'; 

  
C = importdata(ImportFile); 
SineWaveSpectrum = importdata('SIXMINSINWAVEShift_TRUNC.spectrum.dat'); 

  
length = size(ImportFile,2); 

  
row = 18; %This is the row that corresponds to the driving frequency, 

2.77mHz 

  

  
Filename = [ImportFile(1:length-4),'_Gains_',datestr(now,30),'.mat']; 

  
cellnumber = size(C.data,2)-2; %Set the cell number based on columns in  
%C, but remember the final column in data matrices is the average, so  
%subtract 1 from that 

  

  
%%%%%%%% 
for i = 2:cellnumber+2 
Cgains(:,i-1) = [C.data(:,i)./SineWaveSpectrum.data(:,2)]; %Second 

column of  
%SineWaveSpectrum is data; first is frequency 

  

  
end 

  
%%%%%% 
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Gainsdb = 10*log(Cgains); 

  
figure1 = figure; 

  
% Create axes 
axes1 = axes('Parent',figure1,'LineWidth',2,'FontSize',12); 
hold(axes1,'all'); 
box(axes1,'off'); 
plot(C.data(row,1),Gainsdb(row,:),'b.') %Row 18 corresponds to driving 

frequency 
xlabel('Frequency (mHz)','FontSize',16); 

  
Gainsdb_Drive = Gainsdb(row,:); 

  
% Create ylabel 
ylabel('10 * log (P_o_u_t / P_i_n) (dB)','FontSize',16); 

  
% Create title 
%title('1 Minute Period - Hanning','FontSize',16); 

  
%%% 
save(Filename) 

 

A.3. HyPer Signaling Analysis Pipeline 

A.3.1. Step 1: Determine Number of Cells 

%Ariel Kniss 20160314 

  
%AT THE END OF STEP1, YOU NEED TO HAVE THE NUMBER OF CELLS YOU WANT TO 
%ANALYZE (WHITE CELLS, NOT ON THE EDGE) 

  
%The input file has the format of 2 channels interwoven 
%Exp: Ch1, Ch2, Ch1, Ch2, Ch1, Ch2, Ch1, .... etc 

  
%The goal in this script is to first separate them from a multipage 

tif, 
%manually identify cells, subtract background, and calculate the ratio 
%between the channels 

  
%INPUT YOUR FILE NAME (SHOULD BE A MULTIPAGE TIF WITH INTERWOVEN 

CHANNELS) 
savedFile = 'XYpoint2.tif'; 

  
frameRate_inS = 6.17; 

  
%**********************************************************************

**** 
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%**********************************************************************

**** 

  
%**********************************************************************

**** 
expDuration = round(600/frameRate_inS); 
expLength = frameRate_inS*expDuration; 

  
info = imfinfo(savedFile); 
NbImages = numel(info); 

  
NumtoAnalyze = expDuration; 

  
ImEven = cell(1,expDuration); 
ImOdd = cell(1,expDuration); 

  
for k = 1:NumtoAnalyze*2 
    Mod = mod(k,2); 
    if Mod == 1 
    ImOdd{(k+1)/2} = imread(savedFile, k); 
    elseif Mod == 0 
    ImEven{k/2} = imread(savedFile, k); 
    end 
end 

  
%CHANGE THIS IF YOUR ORDER OF AQUISITION IS DIFFERENT! 

  
Im_red = ImOdd; 
Im_ox = ImEven; 

  

  
%The rest should be relatively automatic 
%**********************************************************************

**** 

  
% Crop Cells 

  
%**********************************************************************

**** 
%%THIS SECTION IS ONLY RUN ONCE 

  
%Here we will combine images so the manual picking can be done with the 
%first and last frame fused together, this ensures all locations of the 
%cell are included in the ROI 
Image = imadjust(Im_ox{NumtoAnalyze}); 
Image2 = imadjust(Im_ox{1}); 

  
Overlay = imfuse(Image,Image2); 

  
figure() 
imagesc(Overlay) 
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A.3.2. Step 2: Analyze Cell Traces 

%Ariel Kniss 20160203 

  
%The input file has the format of 2 channels interwoven 
%Exp: Ch1, Ch2, Ch1, Ch2, Ch1, Ch2, Ch1, .... etc 

  
%The goal in this script is to first separate them from a multipage 

tif, 
%manually identify cells, subtract background, and calculate the ratio 
%between the channels 

  
%INPUT YOUR FILE NAME (SHOULD BE A MULTIPAGE TIF WITH INTERWOVEN 

CHANNELS) 
savedFile = 'XYpoint1.tif'; 

  
FileName = [savedFile(1:length(savedFile)-4),'_',datestr(now,30),'.mat' 

]; 

  
%Input the number of cells you would like to manually identify 
Ncell = 25; 

  

  
info = imfinfo(savedFile); 
NbImages = numel(info); 

  
NumtoAnalyze = round(NbImages/8); 

  
ImEven = cell(1,NbImages/2); 
ImOdd = cell(1,NbImages/2); 

  
for k = 1:NbImages 
    Mod = mod(k,2); 
    if Mod == 1 
    ImOdd{(k+1)/2} = imread(savedFile, k); 
    elseif Mod == 0 
    ImEven{k/2} = imread(savedFile, k); 
    end 
end 

  
%CHANGE THIS IF YOUR ORDER OF AQUISITION IS DIFFERENT! 

  
Im_red = ImOdd; 
Im_ox = ImEven; 

  

  
%The rest should be relatively automatic 
%**********************************************************************

**** 

  
% Crop Cells 
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%**********************************************************************

**** 
%%THIS SECTION IS ONLY RUN ONCE 

  
%Here we will combine images so the manual picking can be done with the 
%first and last frame fused together, this ensures all locations of the 
%cell are included in the ROI 
Image = imadjust(Im_ox{NumtoAnalyze}); 
Image2 = imadjust(Im_ox{1}); 

  
Overlay = imfuse(Image,Image2); 

  
%Create ROI 

  
for i=1:Ncell   
    i 
[X,Y,Icrop,rect] = imcrop(Overlay); 
XX{i}=X; 
YY{i}=Y; 
IIcrop{i}=Icrop; 
Rect{i}=rect; 
end 

  

  
%RUN THIS ONCE FOR EACH CHANNEL 
%****************************************************** 
%OXIDIZED CHANNEL 

  
% Apply the ROI to the various pics 
for j=1:NumtoAnalyze 
    ImageAnalyze = Im_ox{j}; 
    for i=1:Ncell 
        Imcrop_ox{j,i}=imcrop(ImageAnalyze,Rect{i}); 
    end 
end 

  
% Get Mean Fluorescent Intensity for each 

  
% calculate intensity, subtract background and normalize 
for j=1:NumtoAnalyze    %step through each picture 
    for i=1:Ncell     %for each picture, the last box drawn is for the 

background.  
        A=mean(Imcrop_ox{j,i}); %average the rows 
        MeanIntensity_ox(i,j)=mean(A,2);         %average the columns 

(order?) 
    end 

     
    for i = 1:Ncell 
        ycoord_ox(i) = round(Rect{i}(2));   %Find the y value for all 

bounding boxes 
        xcoord_ox(i) = round(Rect{i}(1));     %Find the x value for all 

bounding boxes 
        if xcoord_ox(i) >= 3 && ycoord_ox(i)>= 3 
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            Back_ox(i,j) = mean(mean(Im_ox{j}(ycoord_ox(i)-

2:ycoord_ox(i),xcoord_ox(i)-2:xcoord_ox(i)))); %Take the average of 

pixel intensities from the top left, a 2x2 pixel square 
            BackSubMeanIntensity_ox(i,j) = MeanIntensity_ox(i,j) - 

Back_ox(i,j);                    %Perform final calculation where the 

mean cell intensity subtracts the little background box from it 
        else 
            Back_ox(i,j) = mean(mean(Im_ox{j}(ycoord_ox(i)-

1:ycoord_ox(i),xcoord_ox(i)-1:xcoord_ox(i)))); %Take the average of 

pixel intensities from the top left, a 2x2 pixel square 
            BackSubMeanIntensity_ox(i,j) = MeanIntensity_ox(i,j) - 

Back_ox(i,j);                    %Perform final calculation where the 

mean cell intensity subtracts the little background box from it 
        end 
    end 

  
end 

  

  
%Now we want to find those cells that become negative, these will be 
%removed from the dataset 
NegativeCells_ox = BackSubMeanIntensity_ox < 0;     %Creates a binary 

image with 1 if the intensity becomes negative 
RowsToDelete_ox = [];                              %Sets up the matrix 

to keep track of which rows need to be deleted 

  
for i = 1:Ncell                                   %For each object 

found, we want to step through them 
    if sum(NegativeCells_ox(i,:)) > 0              %If the cell becomes 

negative at any point through the images, we want to write this row 

number to another matrix 
            RowsToDelete_ox = [RowsToDelete_ox i];    %Keeps track of 

the rows we want to delete by writing the row number 
    else 
    end 
end 

  
%******************************************************** 
%REDUCED CHANNEL 
% Apply the ROI to the various pics 
for j=1:NumtoAnalyze 
    ImageAnalyze = Im_red{j}; 
    for i=1:Ncell 
        Imcrop_red{j,i}=imcrop(ImageAnalyze,Rect{i}); 
    end 
end 

  
% Get Mean Fluorescent Intensity for each 

  
% calculate intensity, subtract background and normalize 
for j=1:NumtoAnalyze    %step through each picture 
    for i=1:Ncell     %for each picture, the last box drawn is for the 

background.  
        A=mean(Imcrop_red{j,i}); %average the rows 
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        MeanIntensity_red(i,j)=mean(A,2);         %average the columns 

(order?) 
    end 

     
    for i = 1:Ncell 
        ycoord_red(i) = round(Rect{i}(2));   %Find the y value for all 

bounding boxes 
        xcoord_red(i) = round(Rect{i}(1));     %Find the x value for 

all bounding boxes 
        if xcoord_red(i) >= 3 && ycoord_red(i)>= 3 
            Back_red(i,j) = mean(mean(Im_red{j}(ycoord_red(i)-

2:ycoord_red(i),xcoord_red(i)-2:xcoord_red(i)))); %Take the average of 

pixel intensities from the top left, a 2x2 pixel square 
            BackSubMeanIntensity_red(i,j) = MeanIntensity_red(i,j) - 

Back_red(i,j);                    %Perform final calculation where the 

mean cell intensity subtracts the little background box from it 
        else 
            Back_red(i,j) = mean(mean(Im_red{j}(ycoord_red(i)-

1:ycoord_red(i),xcoord_red(i)-1:xcoord_red(i)))); %Take the average of 

pixel intensities from the top left, a 2x2 pixel square 
            BackSubMeanIntensity_red(i,j) = MeanIntensity_red(i,j) - 

Back_red(i,j);                    %Perform final calculation where the 

mean cell intensity subtracts the little background box from it 
        end 
    end 

  
end 

  

  
%Now we want to find those cells that become negative, these will be 
%removed from the dataset 
NegativeCells_red = BackSubMeanIntensity_red < 0;     %Creates a binary 

image with 1 if the intensity becomes negative 
RowsToDelete_red = [];                              %Sets up the matrix 

to keep track of which rows need to be deleted 

  
for i = 1:Ncell                                   %For each object 

found, we want to step through them 
    if sum(NegativeCells_red(i,:)) > 0              %If the cell 

becomes negative at any point through the images, we want to write this 

row number to another matrix 
            RowsToDelete_red = [RowsToDelete_red i];    %Keeps track of 

the rows we want to delete by writing the row number 
    else 
    end 
end 

  
RowsToDelete_comb_unsort_rep = [RowsToDelete_ox RowsToDelete_red]; 

%Combine all rows that need to be deleted into one variable, will be 

unsorted and include replicates present in more than 1 
RowsToDelete_comb_rep = sort(RowsToDelete_comb_unsort_rep);     %This 

will sort in ascending order (lowest first, highest last) 
RowsToDelete_comb = unique(RowsToDelete_comb_rep); %Removes the 

replicates 
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NumRowsToDelete_comb=length(RowsToDelete_comb);               %See how 

many rows need to be deleted 
BackSubMeanIntensityCorr_ox = BackSubMeanIntensity_ox;    %Set up our 

new variable to keep track of the cells that don't become negative 
BackSubMeanIntensityCorr_red = BackSubMeanIntensity_red;    %Set up our 

new variable to keep track of the cells that don't become negative 

  
for i = 1:NumRowsToDelete_comb                           %Step through 

all rows that need to be deleted 

  
        RowNumber_comb = RowsToDelete_comb(i)-(i-1);          

%Specifies the row number, but after the first deleted it accounts for 

the change in row numbers 
        BackSubMeanIntensityCorr_ox(RowNumber_comb,:)=[];   %Remove 

this row number from our corrected matrix of cell values 
        BackSubMeanIntensityCorr_red(RowNumber_comb,:)=[];   %Remove 

this row number from our corrected matrix of cell values 

  
end 

  
%Normalize the vectors to the first time point 

  
for i = 1:NumtoAnalyze 

     
    

NBackSubMeanIntensityCorr_ox(:,i)=BackSubMeanIntensityCorr_ox(:,i)./Bac

kSubMeanIntensityCorr_ox(:,1); 
    

NBackSubMeanIntensityCorr_red(:,i)=BackSubMeanIntensityCorr_red(:,i)./B

ackSubMeanIntensityCorr_red(:,1); 

     
end 

  
%Calculate the ratio for oxidized over reduced 

  
RatioOxoverRed = 

NBackSubMeanIntensityCorr_ox./NBackSubMeanIntensityCorr_red; 

  

  
%************************************************************** 
%Now we want to save the workspace 

  
figure() 
subplot(2,2,1) 
imagesc(BackSubMeanIntensityCorr_red) 
title('Reduced') 
xlabel('Frame') 
ylabel('Cell Number') 

  
subplot(2,2,2) 
imagesc(BackSubMeanIntensityCorr_ox) 
title('Oxidized') 
xlabel('Frame') 
ylabel('Cell Number') 
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subplot(2,2,3) 
imagesc(NBackSubMeanIntensityCorr_red) 
title('Normalized Reduced') 
xlabel('Frame') 
ylabel('Cell Number') 

  
subplot(2,2,4) 
imagesc(NBackSubMeanIntensityCorr_ox) 
title('Normalized Oxidized') 
xlabel('Frame') 
ylabel('Cell Number') 

  
figure() 
imagesc(RatioOxoverRed) 
title('Normalized Ratio (Ox/Red)') 
xlabel('Frame') 
ylabel('Cell Number') 

  
save(FileName)                                      %Filename specified 

at the top, saves the entire workspace for future needs 

  
Avg = mean(NBackSubMeanIntensityCorr_ox); 

  
figure() 
plot(NBackSubMeanIntensityCorr_ox(:,1:100)') 
hold on 
plot(Avg(1:100),'LineWidth',2,'Color','k'); 
title('Normalized Oxidized') 
xlabel('Frame') 
ylabel('Cell Number') 
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